Vol. 73
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-02-21
Analysis of Circular Polarization Backscattering and Target Decomposition Using GB-SAR
By
Progress In Electromagnetics Research B, Vol. 73, 17-29, 2017
Abstract
Currently, most full-polarimetric synthetic aperture radar (SAR) systems adopt linear polarization (LP). On the other hand, circular polarization (CP) is also becoming popular due to its various benefits over LP. However, since CP-SAR is an emerging technique, there are not many imaging and polarimetric analysis results in the literature. As a fundamental study on CP-SAR, this paper presents the results of an investigation on the CP properties of ground-based SAR (GB-SAR) echoes from various canonical targets and a rice paddy sample. The C-band data acquired in a laboratory environment are analyzed and interpreted by means of several factors such as calibration performance, experimental verification of theoretical scattering matrices, imaging quality and accuracy of scattering decomposition results. The eigenvector-based decomposition of the coherency matrix is adopted, and the performance of CP in retrieving the targets' dominant scattering mechanisms and physical parameters is evaluated from entropy-alpha (H-α) plane and orientation angle (β) value. Results demonstrate the effectiveness of CP in interpreting and discriminating the SAR image features mainly owing to its distinct advantage of highly reliable received signal strength.
Citation
Yuta Izumi, Sevket Demirci, Mohd Zafri Baharuddin, Josaphat Tetuko Sri Sumantyo, and Heein Yang, "Analysis of Circular Polarization Backscattering and Target Decomposition Using GB-SAR," Progress In Electromagnetics Research B, Vol. 73, 17-29, 2017.
doi:10.2528/PIERB16081701
References

1. Kankaku, Y., Y. Osawa, S. Suzuki, and T. Watanabe, "The overview of the L band SAR onboard ALOS-2," PIERS Proceedings, 735-738, Moscow, Russia, August 18–21, 2009.

2. Morena, C. L., K. V. James, and J. Beck, "An introduction to the RADARSAT-2 mission," Canadian Journal of Remote Sensing, Vol. 30, No. 3, 221-234, 2004.
doi:10.5589/m04-004

3. Werninghaus, R. and S. Buckreuss, "The TerraSAR-X mission and system design," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 2, 606-614, 2010.
doi:10.1109/TGRS.2009.2031062

4. Sri Sumantyo, J. T. and N. Imura, "Development of circularly polarized synthetic aperture radar for aircraft and microsatellite," IEEE Geoscience and Remote Sensing Symposium, Beijing, China, 2016.

5. Akbar, P. R., J. T. Sri Sumantyo, and H. Kuze, "A novel circularly polarized synthetic aperture radar (CP-SAR) system onboard a spaceborne platform," International Journal of Remote Sensing, Vol. 31, No. 4, 1053-1060, 2009.
doi:10.1080/01431160903156528

6. Touzi, R. and C. Franois, "Requirements on the calibration of hybrid-compact SAR," IEEE Geoscience and Remote Sensing Symposium, 1109-1112, Quebec City, QC, July 2014.

7. Freeman, A., "Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 8, 1617-1624, 2004.
doi:10.1109/TGRS.2004.830161

8. Wright, P. A., S. Quegan, N. S. Wheadon, and C. D. Hall, "Faraday rotation effects on L band spaceborne SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 12, 2735-2744, 2003.
doi:10.1109/TGRS.2003.815399

9. ITU Handbook on Satellite Communication, Wiley, 2002.

10. Warren, L. S., Polarization in Electromagnetic Systems, Artech House, 1993.

11. Sheen, D. M., D. L. McMakin, W. M. Lechelt, and J. W. Griffin, "Circularly polarized millimeterwave imaging for personnel screening," Proceedings of the SPIE — International Society for Optical Engineering, 117-126, Florida, USA, 2005.

12. Campbell, B. A., "Planetary geology with imaging radar: Insights from earth-based lunar studies," Publications of the Astronomical Society of the Pacific, Vol. 128, No. 964, 2001-2015, 2016.
doi:10.1088/1538-3873/128/964/062001

13. Gao, S., Q. Luo, and F. Zhu, Circularly Polarized Antennas, John Wiley and Sons, 2013.

14. Yamaguchi, Y., Radar Polarimetry from Basics to Applications: Radar Remote Sensing Using Polarimetric Information, IEICE, 2007.

15. Cloude, S. R. and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 1, 68-78, 1997.
doi:10.1109/36.551935

16. Raney, R. K., "Hybrid-polarity SAR architecture," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, No. 11, 3397-3404, 2007.
doi:10.1109/TGRS.2007.895883

17. Wiesbeck, W. and D. Kahny, "Single reference, three target calibration and error correction for monostatic, polarimetric free space measurements," Proceedings of the IEEE, Vol. 79, No. 10, 1551-1558, 1991.
doi:10.1109/5.104229

18. Yueh, S. H., J. A. Kong, R. M. Barnes, and R. T. Shin, "Calibration of polarimetric radars using in-scene reflectors," Journal of Electromagnetic Waves and Applications, Vol. 4, No. 1, 27-48, 2012.
doi:10.1163/156939390X00438

19. Gau, J. R. and W. D. Burnside, "New polarimetric calibration technique using a single calibration dihedral," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 142, No. 1, 19-25, 1995.
doi:10.1049/ip-map:19951544

20. Chen, T. J., T. H. Chu, and F. C. Chen, "A new calibration algorithm of wide-band polarimetric measurement system," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 8, 1188-1192, 1991.
doi:10.1109/8.97354

21. Izumi, Y., S. Demirci, M. Z. Baharuddin, and J. T. Sri Sumantyo, "The polarimetric calibration method for ground-based circularly polarized synthetic aperture radar," PIERS Proceedings, 5131-5135, Shanghai, China, August 8–11, 2016.

22. Mehrdad, S., Synthetic Aperture Radar Signal Processing with MATLAB Algorithms, Wiley, 1999.

23. Wang, C., J. Wu, Y. Zhang, G. Pan, J. Qi, and W. A. Salas, "Characterizing L-band scattering of paddy rice in Southeast China with radiative transfer model and multitemporal ALOS/PALSAR imagery," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 4, 988-998, 2009.
doi:10.1109/TGRS.2008.2008309