Vol. 41

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-06-06

Rigorous Substantiation of the Method of Exact Absorbing Conditions in Time-Domain Analysis of Open Electrodynamic Structures

By Olena Shafalyuk, Paul Smith, and Lyudmyla Velychko
Progress In Electromagnetics Research B, Vol. 41, 231-249, 2012
doi:10.2528/PIERB12040506

Abstract

Exact absorbing conditions are used in computational electrodynamics of nonsine waves for truncating the domain of computation when replacing the original open initial boundary value problem by a modified problem formulated in a bounded domain. In this paper we prove the equivalency of these two problems.

Citation


Olena Shafalyuk, Paul Smith, and Lyudmyla Velychko, "Rigorous Substantiation of the Method of Exact Absorbing Conditions in Time-Domain Analysis of Open Electrodynamic Structures," Progress In Electromagnetics Research B, Vol. 41, 231-249, 2012.
doi:10.2528/PIERB12040506
http://jpier.org/PIERB/pier.php?paper=12040506

References


    1. Engquist, B. and A. Majda, "Absorbing boundary conditions for the numerical simulation of waves," Math. Comput., Vol. 31, 629-651, 1977.
    doi:10.1090/S0025-5718-1977-0436612-4

    2. Mur, G., "Absorbing boundary conditions for the finite difference approximation of the time-domain electromagnetic-field equations," IEEE Transactions on Electromagnetic Compatibility, Vol. EMC-23, 377-382, 1981.
    doi:10.1109/TEMC.1981.303970

    3. Berenger, J.-P., "Three-dimensional perfectly matched layer for absorption of electromagnetic waves," J. Comput. Phys., Vol. 127, 363-379, 1996.
    doi:10.1006/jcph.1996.0181

    4. Mei, K. K. and J. Fang, "Superabsorbtion --- A method to improve absorbing boundary conditions," IEEE Transactions on Antennas and Propagation, Vol. 40, 1001-1010, 1992.
    doi:10.1109/8.166524

    5. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, 185-200, 1994.
    doi:10.1006/jcph.1994.1159

    6. Berenger, J.-P., "Three-dimensional perfectly matched layer for absorption of electromagnetic waves," J. Comput. Phys., Vol. 127, 363-379, 1996.
    doi:10.1006/jcph.1996.0181

    7. Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 43, 1460-1463, 1995.
    doi:10.1109/8.477075

    8. Sirenko, K. Y. and Y. K. Sirenko, "Exact `absorbing' conditions in the initial boundary-value problems of the theory of open waveguide resonators," Comput. Math. Math. Phys., Vol. 45, 490-506, 2005.

    9. Sirenko, Y. K., S. Strom, and N. P. Yashina, Modeling and Analysis of Transient Processes in Open Resonant Structure. New Methods and Techniques, Springer, New York, 2007.

    10. Shafalyuk, O., Y. Sirenko, and P. Smith, "Simulation and analysis of transient processes in open axially-symmetrical structures: Method of exact absorbing boundary conditions," Electromagnetic Waves, 99-116, 2011.

    11. Sirenko, Y. K., L. G. Velychko, and F. Erden, "Time-domain and frequency-domain methods combined in the study of open resonance structures of complex geometry," Progress In Electromagnetics Research, Vol. 44, 57-79, 2004.
    doi:10.2528/PIER03030601

    12. Velychko, L. G., Y. K. Sirenko, and O. S. Shafalyuk, "Time-domain analysis of open resonators. Analytical grounds," Progress In Electromagnetics Research, Vol. 61, 1-26, 2006.
    doi:10.2528/PIER06020701

    13. Sirenko, K. Y., "Slot resonances in axially symmetric radiators of pulse-modulated and monochromatic TM0n-modes," Telecomm. Radio Eng., Vol. 66, 9-21, 2007.
    doi:10.1615/TelecomRadEng.v66.i1.20

    14. Velychko, L. G. and Y. K. Sirenko, "Controlled changes in spectra of open quasi-optical resonators," Progress In Electromagnetics Research B, Vol. 16, 85-105, 2009.
    doi:10.2528/PIERB09060202

    15. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Boston, 2000.

    16. Ladyzhenskaya, O. A., The Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York, 1985.

    17. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, US Government Printing Office, Washington, 1972.

    18. Vladimirov, V. S., Equations of Mathematical Physics, Dekker, New York, 1971.

    19. Bateman, H. and A. Erdelyi, Tables of Integral Transforms, Vol. 2, McGraw-Hill, New York, 1954.

    20. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic, New York, 1994.

    21. Janke, E., F. Emde, and F. Lösch, Tables of Higher Functions, McGraw-Hill, New York, 1960.

    22. Mikhailov, V. P., Partial Differential Equations, Mir Publishers, Moscow, 1978.

    23. Jackson, J., Classical Electrodynamics, Wiley, New York, 1975.

    24. Kuzmitchev, I. K., P. M. Melezhyk, V. L. Pazynin, K. Y. Sirenko, Y. K. Sirenko, O. S. Shafalyuk, and L. G. Velychko, "Model synthesis of energy compressors," Radiophysics and Electronics, Vol. 13, No. 2, 166-172, 2008.

    25. Shafalyuk, O. and P. Smith, "Time-domain simulation of electromagnetic scattering in axially-symmetrical open resonators," Proc. of International Conference on Electromagnetics in Advanced Applications, 1302-1305, 2011.
    doi:10.1109/ICEAA.2011.6046538

    26. Moreira, F. J. and J. R. Bergmann, "Classical axis-displaced dual-reflector antennas for omnidirectional coverage," IEEE Transactions on Antennas and Propagation, Vol. 53, 2799-2808, 2005.