Vol. 29
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2011-04-13
An Improved Differential Evolution for Autonomous Deployment and Localization of Sensor Nodes
By
Progress In Electromagnetics Research B, Vol. 29, 289-309, 2011
Abstract
In recent years, Wireless Sensor Networks (WSNs) have transitioned from being objects of academic research interest to a technology that is frequently being employed in real-life applications and rapidly being commercialized. The performance of a WSN is largely affected by high quality deployment and precise localization of sensor nodes. This article deliberates autonomous deployment of sensor nodes from an Unmanned Aerial Vehicle (UAV). This kind of deployment has importance in emergency applications, such as disaster monitoring and battlefield surveillance. The goal is to deploy the nodes only in the terrains of interest, which are distinguished by segmentation of the images captured by a camera on board the UAV. In this article we propose an improved variant of a very powerful real parameter optimizer, called Differential Evolution (DE) for image segmentation and for distributed localization of the deployed nodes. Image segmentation for autonomous deployment and distributed localization are designed as multidimensional optimization problems and are solved by the proposed algorithm. Performance of the proposed algorithm is compared with other prominent adaptive DE-variants like SaDE and JADE as well as a powerful variant of the Particle Swarm optimization (PSO) algorithm, called CLPSO. Simulation results indicate that the proposed algorithm performs image segmentation faster than both types of algorithm for optimal thresholds. Moreover in case of localization it gives more accurate results than the compared algorithms. So by using the proposed variant of Differential Evolution improvement has been achieved both in the case of speed and accuracy.
Citation
Subhrajit Roy, Sk. Minhazul Islam, Saurav Ghosh, Swagatam Das, and Ajith Abraham, "An Improved Differential Evolution for Autonomous Deployment and Localization of Sensor Nodes," Progress In Electromagnetics Research B, Vol. 29, 289-309, 2011.
doi:10.2528/PIERB11022302
References

1. Akyildiz, I. F., W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor networks," IEEE Commun. Mag., Vol. 40, No. 8, 102-114, Aug. 2002.
doi:10.1109/MCOM.2002.1024422

2. Callaway, Jr., E. H., Wireless Sensor Networks: Architectures and Protocols, CRC Press, Aug. 2003.
doi:10.1201/9780203500705

3. Zhao, F. and L. Guibas, Wireless Sensor Networks: An Information Processing Approach, Morgan Kaufmann, 2004.

4. Bulusu, N. and S. Jha, Wireless Sensor Network: A Systems Perspective, Artech House, Jul. 2005.

5. Chong, C. and S. Kumar, "Sensor networks: Evolution, opportunities, and challenges," Proc. IEEE, Vol. 91, No. 8, 1247-1256, Aug. 2003.
doi:10.1109/JPROC.2003.814918

6. Halgamuge, M. N., M. Zukerman, K. Ramamohanarao, and H. L. Vu, "An estimation of sensor energy consumption," Progress In Electromagnetics Research B, Vol. 12, 259-295, 2009.
doi:10.2528/PIERB08122303

7. Liu, H. Q., H. C. So, K. W. K. Lui, and F. K. W. Chan, "Sensor selection for target tracking in sensor networks," Progress In Electromagnetics Research, Vol. 95, 267-282, 2009.
doi:10.2528/PIER09070802

8. Gay-Fernandez, J. A., M. G. Sanchez, I. Cuinas, A. V. Alejos, J. G. Sanchez, and J. L. Miranda-Sierra, "Propagation analysis and deployment of a wireless sensor network in a forest," Progress In Electromagnetics Research, Vol. 106, 121-145, 2010.
doi:10.2528/PIER10040806

9. Al-Karaki, J. N. and A. E. Kamal, "Routing techniques in wireless sensor networks: A survey," IEEE Wireless Communications, 6-28, Dec. 2004.
doi:10.1109/MWC.2004.1368893

10. Akyildiz, I. F., W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless sensor networks: A survey," Computer Networks, Vol. 38, No. 4, 393-422, 2002.
doi:10.1016/S1389-1286(01)00302-4

11. Pottie, G. and W. Kaiser, "Wireless sensor networks," Communications of the ACM, Vol. 43, No. 5, 51-58, May 2000.
doi:10.1145/332833.332838

12. Bojkovic, Z. and B. Bakmaz, "A survey on wireless sensor networks deployment," WSEAS Trans. on Communications, Vol. 7, No. 12, 1172-1181, Dec. 2008.

13. Yick, J., B. Mukherjee, and D. Ghosal, "Wireless sensor network survey," Computer Networks, Vol. 52, No. 12, 2292-2330, Aug. 2008.
doi:10.1016/j.comnet.2008.04.002

14. Corke, P., S. Hrabar, R. Peterson, D. Rus, S. Sampalli, and G. Sukhatme, "Autonomous deployment and repair of a sensor network using an unmanned aerial vehicle," Proc. IEEE Int. Conf. Robot. Autom., Vol. 4, 3602-3608, May 2004.

15. Ollero, A. and L. Merino, "Control and perception techniques for aerial robotics," Annu. Rev. Control, Vol. 28, 167-178, May 2004.

16. Sezgin, M. and B. Sankur, "Survey over image thresholding techniques and quantitative performance evaluation," J. Electron. Imag., Vol. 13, No. 1, 146-168, Jan. 2004.
doi:10.1117/1.1631315

17. Patwari, N., J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal, "Locating the nodes: Cooperative localization in wireless sensor networks," IEEE Signal Process. Mag., Vol. 22, No. 4, 54-69, Jul. 2005.
doi:10.1109/MSP.2005.1458287

18. Aspnes, J., T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R. Yang, B. D. O. Anderson, and P. N. Belhumeur, "A theory of network localization," IEEE Trans. Mobile Comput., Vol. 5, No. 12, 1663-1678, Dec. 2006.
doi:10.1109/TMC.2006.174

19. Mitilineos, S. A., D. M. Kyriazanos, O. E. Segou, J. N. Goufas, and S. C. A. Thomopoulos, "Indoor localization with wireless sensor networks," Progress In Electromagnetics Research, Vol. 109, 441-474, 2010.
doi:10.2528/PIER10062801

20. Boukerche, A., H. A. B. Oliveira, E. F. Nakamura, and A. A. F. Loureiro, "Localization systems for wireless sensor networks," IEEE Wireless Commun. Mag., Vol. 14, No. 6, 6-12, Dec. 2007.
doi:10.1109/MWC.2007.4407221

21. Hightower, J. and G. Borriello, "Location systems for ubiquitous computing," Computer, Vol. 34, No. 8, 57-66, Aug. 2001.
doi:10.1109/2.940014

22. Mao, G., B. Fidan, and B. D. O. Anderson, "Wireless sensor network localization techniques," Computer Networks, Vol. 51, No. 10, 2529-2553, Jul. 2007.
doi:10.1016/j.comnet.2006.11.018

23. Amundson, I. and I. Amundson, "A survey on localization for mobile wireless sensor networks," MELT'09 Proceedings of the 2nd International Conference on Mobile Entity Localization and Tracking in GPS-less Environments, Vol. 5801, 235-254, Springer Berlin/Heidelberg, 2009.

24. Storn, R. and K. V. Price, "Differential evolution --- A simple and efficient adaptive scheme for global optimization over continuous spaces," Technical Report TR-95-012, ICSI, http://http.icsi.berkeley.edu/~storn/litera.html, 1995.

25. Storn, R. and K. Price, "Differential evolution --- A simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, Vol. 11, No. 4, 341-359, 1997.
doi:10.1023/A:1008202821328

26. Qin, A. K., V. L. Huang, and P. N. Suganthan, "Differential evolution algorithm with strategy adaptation for global numerical optimization," IEEE Trans. on Evolutionary Computation, Vol. 13, No. 2, 398-417, Apr. 2009.
doi:10.1109/TEVC.2008.927706

27. Zhang, J. and A. C. Sanderson, "JADE: Adaptive differential evolution with optional external archive," IEEE Trans. on Evolutionary Computation, Vol. 13, No. 5, 945-958, Oct. 2009.
doi:10.1109/TEVC.2009.2014613

28. Liang, J. J., A. K. Qin, P. N. Suganthan, and S. Baskar, "Comprehensive learning particle swarm optimizer for global optimization of multimodal functions," IEEE Trans. on Evolutionary Computation, Vol. 10, No. 3, 281-295, 2006.
doi:10.1109/TEVC.2005.857610

29. Otsu, N., "A threshold selection method from gray-level histograms," IEEE Trans. Syst., Man Cybern., Vol. 9, No. 1, 62-66, Jan. 1979.
doi:10.1109/TSMC.1979.4310076