Vol. 25

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-08-20

Calculation of the Nonlinear Absorption Coefficient of a Strong Electromagnetic Wave by Confined Electrons in Doping Superlatices

By Nguyen Quang Bau and Do Manh Hung
Progress In Electromagnetics Research B, Vol. 25, 39-52, 2010
doi:10.2528/PIERB10062902

Abstract

Analytic expressions for the nonlinear absorption coefficient (nonlinear absorption coefficient=NAC) of a strong electromagnetic wave (laser radiation) caused by confined electrons for the case of electron-optical phonon scattering in doping superlattices (doping superlattices=DSLs) are calculated by using the quantum kinetic equation for electrons. The problem is also considered for both the absence and the presence of an external magnetic field. The dependence of the NAC on the intensity E0 and the energy hΩ of the external strong electromagnetic wave (electromagnetic wave=EMW), the temperature T of the system, the doping concentration nD and the cyclotron frequency ΩB for case of an external magnetic field is obtained. Two cases for the absorption: Close to the absorption threshold ∣khΩ-0∣≤ε and far away from the absorption threshold ∣khΩ-0∣≥ε (k=0, ±1, ±2..., 0 and ε are the frequency of optical phonon and the average energy of electrons, respectively) are considered. The analytic expressions are numerically evaluated, plotted, and discussed for a specific DSLs n-GaAs/p-GaAs. The computations show that the NAC in DSLs in case presence of an external magnetic field is much more greater than to it is absence of an external magnetic field. The appearance of an external magnetic field causes surprising changes in the nonlinear absorption. All the results for the presence of an external magnetic field are compared with those for the absence of an external magnetic field to show the difference.

Citation


Nguyen Quang Bau and Do Manh Hung, "Calculation of the Nonlinear Absorption Coefficient of a Strong Electromagnetic Wave by Confined Electrons in Doping Superlatices," Progress In Electromagnetics Research B, Vol. 25, 39-52, 2010.
doi:10.2528/PIERB10062902
http://jpier.org/PIERB/pier.php?paper=10062902

References


    1. Matsumoto, Y., S. Ozaki, and S. Adachi, "Optical properties of the bulk amorphous semiconductor ZnIn2Te4," J. Appl. Phys., Vol. 86, 3705, 1999.
    doi:10.1063/1.371282

    2. Jellison, Jr. and G. E. F. A. Modine, "Erratum: Parameterization of the optical functions of amorphous materials in the interband region," Appl. Phys. Lett., Vol. 69, 371, 1996.
    doi:10.1063/1.118064

    3. Khokhlov, A. F., I. A. Chuchmaǐ, and A. V. Ershov, "Absorption features in a-Si/ZrOx Nanostructures," Semiconductors, Vol. 34, No. 3, 344, 2000.
    doi:10.1134/1.1187983

    4. Keimann, F., R. Brazis, H. Barkley, W. Kasparek, M. Thumm, and V. Erckmann, "Millimeter-wave frequency tripling in bulk semiconductors," Europhys. Lett., Vol. 11, 337, 1990.
    doi:10.1209/0295-5075/11/4/008

    5. Lyubin, V. M. and M. L. Klebanov, "Laser-induced anisotropic absorbtion, reflection, and scattering of light in chalcogenide glassy semiconductors," Semiconductors, Vol. 32, No. 8, 817, 1998.
    doi:10.1134/1.1187513

    6. Malevich, V. L. and I. A. Utkin, "Nonlinear optical absorption in a heavily doped degenerate n-GaAs," Semiconductors, Vol. 34, No. 8, 924, 2000.
    doi:10.1134/1.1188101

    7. Malevich, V. L. and E. M. Epstein, "Nonlinear optical properties of conduction electrons in semiconductors," Sov. Quantum Electronic, Vol. 1, 1468, 1974.

    8. Pavlovich, V. V. and E. M. Epshtein, "Quantum theory of absorption of electronmagnetic wave by free carries in simiconductors," Sov. Phys. Stat., Vol. 19, 1760, 1977.

    9. Schmittrink, S., D. S. Chemla, and D. A. B. Miller, "Linear and nonlinear optical properties of semiconductor quantum wells," Adv. Phys., Vol. 38, 89, 1989.
    doi:10.1080/00018738900101102

    10. Zegrya, G. G. and V. E. Perlin, "Intraband absorption of light in quantum wells induced by electron-electron collisions," Semiconductors, Vol. 32, No. 4, 417, 1998.
    doi:10.1134/1.1187408

    11. Shmelev, G. M., I. A. Chaikovskii, and N. Q. Bau, "HF conduction in semiconductors superlattices," Sov. Phys. Tech. Semicond., Vol. 12, 1932, 1978.

    12. Schmit-Rink, S., D. S. Chemla, and D. A. B. Miler, "Linear and nonlinear optical properties in semiconductor quantum wells," Adv. Phys., Vol. 38, 89, 1989.
    doi:10.1080/00018738900101102

    13. Bau, Q. N., D. M. Hung, and B. N. Ngoc, "The nonlinear absorption coeffcient of a strong electromagnetic wave caused by confined electrons in quantum wells," J. Korean Phys. Soc., Vol. 54, No. 2, 765, 2009.
    doi:10.3938/jkps.54.765

    14. Vasilopoulos, P., M. Charbonneau, and C. M. Van Vliet, "Linear and nonlinear electrical conduction in quasi-two-dimensional quantum wells," Phys. Rev. B, Vol. 35, 1334, 1987.
    doi:10.1103/PhysRevB.35.1334

    15. Abouelaoualim, D., "Electron-confined LO-phonon scattering in GaAs-Al0.45Ga0.55 As superlattice ," Pramana Journal of Physics, Vol. 66, 455-465, 2006.
    doi:10.1007/BF02704398

    16. Gaggero-Sager, M. L., N. Moreno-Martinez, I. Rodriguez-Vargas, R. Perez-Alvarez, V. V. Grimalsky, and M. E. Mora-Ramos, "Electronic structure as a function of temperature for Si doped quantum wells in GaAs," PIERS Online, Vol. 3, No. 6, 851-854, 2007.
    doi:10.2529/PIERS061006210621

    17. Butscher, S. and A. Knorr, "Occurrence of intersubband polaronic repellons in a two-dimesional electron gas," Phys. Rev. L, Vol. 97, 197401, 2006.
    doi:10.1103/PhysRevLett.97.197401

    18. Bau, N. Q. and T. C. Phong, "Calculations of the absorption coefficient of a weak EMW by free carriers in quantum wells by the Kubo-Mori method," J. Phys. Soc. Jpn., Vol. 67, 3875, 1998.
    doi:10.1143/JPSJ.67.3875

    19. Bau, N. Q., N. V. Nhan, and T. C. Phong, "Calculations of the absorption coefficient of a weak electromagnetic wave by free carriers in doped superlattices by using the Kubo-Mori method," J. Korean. Phys. Soc., Vol. 41, 149, 2002.

    20. Samuel, E. P. and D. S. Patil, "Analysis of wavefunction distribution in quantum well biased laser diode using transfer matrix method," Progress In Electromagnetics Research Letters, Vol. 1, 119, 2008.
    doi:10.2528/PIERL07111902

    21. Bau, N. Q., L. Dinh, and T. C. Phong, "Absorption coefficient of weak electromagnetic wave caused by confined electrons in quantum wires," J. Korean. Phys. Soc., Vol. 51, 1325-1330, 2007.
    doi:10.3938/jkps.51.1325

    22. Karabulut, I. and S. Baskoutas, "Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: Effects of impurities, electric field, size, and optical intensity," J. Appl. Phys., Vol. 103, 073512, 2008.
    doi:10.1063/1.2904860