Vol. 16
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-07-30
Electromagnetic Scattering Using GPU-Based Finite Difference Frequency Domain Method
By
Progress In Electromagnetics Research B, Vol. 16, 351-369, 2009
Abstract
This paper presents a graphics processing based implementation of the Finite-Difference Frequency-Domain (FDFD) method, which uses a central finite differencing scheme for solving Maxwell's equations for electromagnetics. The radar cross section for different structures in 2D and 3D has been calculated using the FDFD method. The FDFD code has been implemented for the CPU calculations and the same code is implemented for the GPU calculations using the Brook+ developed by AMD. The solution obtained by using the GPU based-code showed more than 40 times speed over the CPU code.
Citation
Saber Zainud-Deen, Emadeldeen Hassan, Mourad Ibrahim, Kamal Awadalla, and Adel Botros, "Electromagnetic Scattering Using GPU-Based Finite Difference Frequency Domain Method," Progress In Electromagnetics Research B, Vol. 16, 351-369, 2009.
doi:10.2528/PIERB09060703
References

1. "GPGPU,", http://www.gpgpu.org.
doi:10.1109/JPROC.2008.917757

2. Owens, J. D., M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, "GPU computing," Proceedings of the IEEE, Vol. 96, No. 5, 879-899, 2008.
doi:10.1109/JPROC.2008.917757

3. "Streamcomputing,", http://ati.amd.com/technology.
doi:10.1109/JPROC.2008.917757

4. "Intel processors product list,", http://support.intel.com/support/processor.

5. Inman, M. J. and A. Z. Elsherbeni, "Optimization and parameter exploration using GPU based FDTD solvers," IEEE MTT-S Symposium, 149-152, June 2008.
doi:10.1109/MAP.2005.1608730

6. Inman, M. J. and A. Z. Elsherbeni, "Programming video cards for computational electromagnetics applications," IEEE Antennas Propag. Mag., Vol. 47, 71-78, 2005.

7. Inman, M. J., A. Z. Elsherbeni, and C. E. Smith, "FDTD calculations using graphical processing units," Proceedings of IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 728-731, Honolulu, HI, USA, 2005.
doi:10.1109/TAP.2008.924768

8. Peng, S. and Z. Nie, "Acceleration of the method of moments calculations by using graphics processing units," IEEE Trans. Antennas Propag., Vol. 56, No. 7, 2130-2133, 2008.
doi:10.2528/PIER07121302

9. Tao, Y. B., H. Lin, and H. J. Bao, "From CPU to GPU: GPU-based electromagnetic computing (GPUECO)," Progress In Electromagnetics Research, Vol. 81, 1-19, 2008.
doi:10.2528/PIER05071001

10. Al-Sharkawy, M., V. Demir, and A. Z. Elsherbeni, "The iterative multi-region algorithm using a hybrid finite difference frequency domain and method of moments techniques," Progress In Electromagnetics Research, Vol. 57, 19-32, 2006.

11. Zainud-Deen, S. H., M. S. Ibrahim, and E. El-Deen, "A hybrid finite difference frequency domain and particle swarm optimization techniques for forward and inverse electromagnetic scattering problems," The 23rd Annual Review of Progress in Applied Computational Electromagnetics, 1575-1580, Verona, Italy, March 2007.

12. Zainud-Deen, S. H., E. El-Deen, and M. S. Ibrahim, "Electro-magnetic scattering by conducting/dielectric objects," The 23rd Annual Review of Progress in Applied Computational Electromagnetics, 1866-1871, Verona, Italy, March 2007.
doi:10.2528/PIERB07112803

13. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112703

14. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.

15. Al-Sharkawy, M. H., V. Demir, and A. Z. Elsherbeni, Electromagnetic Scattering Using the Iterative Multiregion Technique, Morgain & Claypool Publishers, USA, 2007.

16. Vesely, B. F., "Iterative GPGPU linear solvers for sparse matrices,", MSc. Thesis, Faculty of Electrical Engineering, Czech Technical University, Prague, 2008.

17. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, 302-307, 1966.

18. Taflove, A., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, USA, 2005.

19. Balanis, C. A., Antenna Theory, Analysis and Design, John Wiley & Sons, Inc., New York, 2005.
doi:10.1109/TAP.2008.2007283

20. Xiao, G., J. Mao, and B. Yuan, "Generalized transition matrix for arbitrarily shaped scatterers or scatterer groups," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3723-3732, 2008.
doi:10.1109/8.214614

21. Chatterjee, A., J. M. Jin, and J. L. Volakis, "Edge-based finite elements and vector ABC's applied to 3-D scattering," IEEE Trans. Antennas Propag., Vol. 41, No. 2, 221-226, 1993.