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Abstract—This paper presents a graphics processing based im-
plementation of the Finite-Difference Frequency-Domain (FDFD)
method, which uses a central finite differencing scheme for solving
Maxwell’s equations for electromagnetics. The radar cross section for
different structures in 2D and 3D has been calculated using the FDFD
method. The FDFD code has been implemented for the CPU calcu-
lations and the same code is implemented for the GPU calculations
using the Brook+ developed by AMD. The solution obtained by using
the GPU based-code showed more than 40 times speed over the CPU
code.
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1. INTRODUCTION

Over the last decade, Graphics Processing Units (GPUs) have
developed rapidly being primitive drawing devices to being major
computing resources. The newest GPUs have as many as 220
million transistors, approximately twice as many as a typical Central
Processing Unit (CPU) in a PC. Moreover, the cache consumes most
of the transistors in a CPU, while GPUs use only small caches
and devote the majority of transistors to computation. This large
number of parallel processing elements converts the GPU into a parallel
computing system [1, 2]. Recently, the development of the GPUs
has reached a new high-point with the addition of double precision
64 bit floating point capabilities and availability of high level language
programming interface [3]. This development has facilitated the
abstraction of the modern GPU as a stream processor. Compared
with the CPU, the GPU is better suited for parallel processing and
vector processing and has evolved to perform various types of numerical
computations. In general, there are two factors that in some cases
make GPU an attractive target architecture for accelerating general
purpose computations. First, the raw throughput speed of GPU (∼ 1.2
TFLOPS) compared with CPU (∼ 12 GFLOPS) [3, 4]. Second, the
GPU acts as a co-processor, which is the key motivation fact for using
it for parallel processing.

The high performance of GPU has been reported in many
applications such as sparse linear system solvers, physical simulations,
signal processing, and image processing. These achievements have
demonstrated the potential power of GPU in the field of scientific
computations. The applications of GPU in the area of computational
electromagnetics started in the finite-difference time-domain method
(FDTD) where the acceleration ratio reached approximately 25 times
compared with the CPU performance [5–7]. The graphics processing
unit has also been used to speed up the method of moments
(MoM) calculations for electromagnetic scattering from arbitrary
three-dimensional conducting objects where 30 times acceleration
ratio is achieved [8]. Further, the GPU has been used to move
all electromagnetic computing code to graphical hardware using the
Graphical Electromagnetic Computing (GRECO) method where it has
achieved approximately 30 times faster results [9].

The finite-difference frequency-domain method (FDFD) has
received considerable interest as an efficient, full-wave solution method
for electromagnetic problems [10–15]. The finite-difference frequency-
domain is simple in formulation and most flexible in modeling arbitrary
shaped inhomogeneous filled and anisotropic scatterers. FDFD solves
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Maxwell’s equations in the frequency domain by replacing the partial
derivatives with center difference approximation as the FDTD method.
Although the final solution of FDTD is obtained by iterating the
solution through the time, the result in the FDFD method is achieved
by solving a system of linear equations AX = Y, where A is the sparse
coefficient matrix, Y is the excitation vector and X is the unknown
vector as the case in the MoM.

In this work, the FDFD method is implemented on a GPU. To
the best of the authors’ knowledge, this is the first time to implement
the FDFD to run on the GPU. The iterative bi-conjugate gradient
method (BICG) [16] is used to solve the sparse matrix for 2D and
3D scattering problems using the FDFD method. The use of the
GPU-based computation made it quite feasible to study some complex
problems like the scattering of electromagnetic waves on different
structures metamaterial layers. The work done here has revealed that
it is only one parameter which significantly affects the scattering from
metamaterial layers. The rest of the paper is organized as follows.
Section 2 presents a brief description of the FDFD method. Section 3
presents an overview of using GPUs for general purpose computation.
Section 4 discusses the implementation of the FDFD on GPU. In
Section 5, numerical results are given and investigated. Finally, Section
6 concludes this study.

2. FDFD METHOD

The finite-difference frequency-domain method solves Maxwell’s
equations in the frequency domain by replacing the partial derivatives
with center-difference approximation. The first step in constructing
FDFD algorithm is to discretize the computational domain into Nx,
Ny, and Nz cells in the x-, y-, and z-directions, respectively, and define
the locations of the electric and magnetic field vectors on each cell.
The Yee [17] cell will be used in this work where the locations of the
vector components are defined. Because the basic building block (Yee
cell) is a cube, curved surfaces of a scatterers are staircased. Through
this paper there is no special treatment for material discontinuities.
The uniaxial perfectly matched layer (UPML) [18], as an absorbing
boundary, is used to terminate the computational domain. Maxwell’s
curl equations for the total electric and magnetic field components and
using the UPML formulation can be written as [18],

∇ × H̄total = (jωε + σe)S̄ Ētotal (1)

∇ × Ētotal = −(jωµ + σm)S̄∗H̄total (2)
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where S̄ and S̄∗ are a diagonal tensors defined by:

S̄ =

[
sysz/sx 0 0

0 sxsz/sy 0
0 0 sxsy/sz

]
and S̄∗=

[
s∗ys∗z/s∗x 0 0

0 s∗xs∗z/s∗y 0
0 0 s∗xs∗y/s∗z

]

and

sx = 1 + σPML
x /jωε0, sy = 1 + σPML

y /jωε0, sz = 1 + σPML
z /jωε0,

s∗x = 1+σ∗PML
x /jωµ0, s∗y = 1+σ∗PML

y /jωµ0, s∗z = 1+σ∗PML
z /jωµ0

For perfect matching between the free space and the UPML the
following condition should be verified [18]:

σPML

ε0
=

σ∗PML

µ0
(3)

In Equations (1) and (2), by separating the total fields into incident
and scattered field components, then:

∇ × ( H̄ inc + H̄scat) = (jωε + σe)S̄ (Ēinc + Ēscat) (4)
∇ × (Ēinc + Ēscat) = −(jωµ + σm)S̄∗(H̄ inc + H̄scat) (5)

where, Einc and H inc are the incident fields that would exist in the
computational domain with no scatterers. If the computational domain
is free space, the incident field satisfies Maxwell’s equations, such that:

∇ × H̄ inc = jωεoS̄Ēinc (6)
∇ × Ēinc = −jωµoS̄

∗H̄ inc (7)

Substituting of (6) and (7) in (4) and (5), yields:

Escat =
1

(jωε + σe)S̄
∇×Hscat − jω(ε− ε0) + σe

(jωε + σe)
Einc (8)

Hscat = − 1
(jωµ + σm)S̄∗

∇× Escat − jω(µ− µ0) + σm

(jωµ + σm)
H inc (9)

Applying the central difference approximations on the above equations
yields:

Escat
x (i, j, k) =

1
Lx(jωεx + σe

x)

[
Hscat

z (i, j, k)−Hscat
z (i, j − 1, k)

∆y

− Hscat
y (i, j, k)−Hscat

y (i, j, k − 1)
∆z

]

−(jω(εx − ε0) + σe
x)

(jωεx + σe
x)

Einc
x (i, j, k) (10)
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Escat
y (i, j, k) =

1
Ly(jωεy + σe

y)

[
Hscat

x (i, j, k)−Hscat
x (i, j, k − 1)

∆z

− Hscat
z (i, j, k)−Hscat

z (i− 1, j, k)
∆x

]

− (jω(εy − ε0) + σe
y)

(jωεy + σe
y)

Einc
y (i, j, k) (11)

Escat
z (i, j, k) =

1
Lz(jωεz + σe

z)

[
Hscat

y (i, j, k)−Hscat
y (i− 1, j, k)

∆x

− Hscat
x (i, j, k)−Hscat

x (i, j − 1, k)
∆y

]

− (jω(εz − ε0) + σe
z)

(jωεz + σe
z)

Einc
z (i, j, k) (12)

Hscat
x (i, j, k) =

1
Mx(jωµx + σm

x )

[
Escat

z (i, j + 1, k)− Escat
z (i, j, k)

∆y

− Escat
y (i, j, k + 1)− Escat

y (i, j, k)
∆z

]

− (jω(µx − µ0) + σm
x )

(jωµx + σm
x )

H inc
x (i, j, k) (13)

Hscat
y (i, j, k) =

1
My(jωµy + σm

y )

[
Escat

x (i, j, k + 1)− Escat
x (i, j, k)

∆z

− Escat
z (i + 1, j, k)−Escat

z (i, j, k)
∆x

]

− (jω(µy − µ0) + σm
y )

(jωµy + σm
y )

H inc
y (i, j, k) (14)

Hscat
z (i, j, k) =

1
Mz(jωµz + σm

z )

[
Escat

y (i + 1, j, k)− Escat
y (i, j, k)

∆x

− Escat
x (i, j + 1, k)−Escat

x (i, j, k)
∆y

]

−(jω(µz − µ0) + σm
z )

(jωµz + σm
z )

H inc
z (i, j, k) (15)



356 Zainud-Deen et al.

where Lx = sysz/sx, Ly = sxsz/sy, Lz = sxsy/sz, Mx = s∗ys∗z/s∗x,
My = s∗xs∗z/s∗y, and Mz = s∗xs∗y/s∗z. Equations (10) to (15) can be
reduced to three equations, in terms of the three scattered electric
field components. More details about the final expressions can be
found in [15]. The BICG is implemented on a GPU to fit the solution
of the FDFD method both in 2D and 3D cases as will be illustrated
in the next section. Once the scattered field is obtained in the near
field zone, the near-to-far-field transformation [19] is used to find the
far-zone scattered field.

kernel void sum (float a<>,  float b<>,  out float c<>)

{

c = a + b;

}

int main (int argc,  char** argv) 

{

int i,  j;

float a<10, 10>

float b<10, 10>

float       c<10,     

float input_a [10] [10] ;

float input_b [10] [10] ;

float input_c [10] [10] ;

for (i=0; i<10; i++) {

for (j=0; j<10; j++) {

input_a [i] [j] = (float) i ;

input_b [i] [j] = (float) j ;

}}

streamRead (a, input_a) ;

streamRead (b, input_b) ;

sum (a, b, c) ;

streamWrite (c, input_c) ;

...
}

Brook+ memory access functions

Kernel

;

;
  Streams declarations

(a)

[a] 28

4 52 3[c] 0 1 6 7

1 5 9 13

226

reduce void

sum (float c<>, reduce float a<>) 

{

a +=  c;

}

(b)

10> ;

Figure 1. (a) A sample for a program written to sum two arrays
on the GPU using brook+. (b) A sample of a one dimension reduce
kernel.
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3. GPUs BASED ALGORITHMS

GPU memory is organized in textures. In computer graphics these
textures are used to store color images. The GPU is able to perform
a variety of arithmetic functions on the texture. For example, it
may add, subtract, multiply, or divide across the texture, which is
simply done using vector math on these textures. This vector math
occurs in a section of the GPU named fragment processor [6]. In ATI
Radeon 4870 graphical card, which is used in this paper, there are 800
of these fragment processors. For general purpose computations, the
texture forms a 2D array that can be accessed by the GPU shaders.
Fortunately, in the past few years there were some high level languages
that allowed developers to write their applications at an abstract level
without having to worry about the exact details of the hardware.
One of these languages is the Brook which is an extension to the
C-language for stream programming originally developed by Stanford
University [1].

In this work, the programming of the GPU is accomplished using
Brook+. Brook+ is an implementation by AMD Corporation for the
Brook specification on AMD’s compute abstraction layer with some
enhancements [3]. One of these enhancements is the introduction of
the double precision data type that enables the implementation of the
iterative BICG method. In Brook+, all data are presented in the form
of streams, which is defined as a collection of data records that can be
mapped into memory textures and operated on concurrently. Streams
are processed in kernels. Kernels can be considered as functions,
which receive streams, execute operations on them and send out result
streams. Figure 1(a) shows a sample for a program written to sum two
arrays on the GPU using Brook+. The kernel used for the summation
could be used easily for multiplication of two arrays just by changing
the addition sign by a multiplication sign inside the kernel. Another
important kernel that is usually used for general purpose computations
is the reduce kernel. Reduction on GPU provides a data-parallel
method for computing a single value from a set of records. The
process of reduction depends on the size of the output stream (i.e.,
the reduction occurs concurrently until the size of the output stream
is reached). Figure 1(b) shows an example of a reduction process of
a one dimension vector of size eight to an output stream of size one.
More details can be found in [3].
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4. IMPLEMENTATION OF FDFD METHOD ON GPU

For the solution of the linear system of equations results from the
FDFD technique, the BICG method is adapted as an iterative method
to generate two sequences of conjugate (or orthogonal) vectors. These
vectors are the residuals of these iterates. One vector is based on the
coefficient matrix A, and the other one is based on the transpose of
the coefficient matrix AT. Figure 2 shows the BICG algorithm used
in this paper [16].

The FDFD method results in a regular sparse coefficient matrix A
both in the 2D (only 5 non-zero elements per row in the coefficient
matrix) and 3D (only 13 non-zero element per row in the coefficient
matrix) problems. The sparse coefficient matrix A contains maximum
non-zero elements equal to 5N2D for the 2D case and 13N3D for 3D
case, where N2D = NxNy and N3D = 3NxNyNz. The sparse coefficient
matrix A is represented by two vectors:

1. A vector containing the values of the non-zero elements.
2. A vector containing the index of the column of the non-zero

elements of the coefficient matrix A.

The vector of the unknown X and the vector of the excitation Y
contain N2D elements for the 2D case and N3D elements for the 3D
case.
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Figure 2. The bi-conjugate gradient method algorithm.
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The sparse coefficient matrix A is mapped to a stream on the
GPU with dimension selected to be 5Nx × Ny for the 2D case and
39Nx × (NyNz) for the 3D case. Further, the unknown vector X and
the excitation vector Y are mapped to a stream of dimension Nx×Ny

for the 2D case and to a stream of 3Nx × (NyNz) for the 3D case.
This semi-square shape enabled exploiting the maximum 2D texture
size on the GPU. Two streams index x and index y are used to
gather the elements of the unknown stream (corresponding to X) to
the corresponding elements of the coefficient stream (corresponding to
A) for multiplication process. The key acceleration point in solving the
FDFD is the matrix vector multiplication (AX=Y) that is iteratively
calculated inside the BICG algorithm and performed on the GPU.
The kernel that is used for the multiplication is shown in Figure 3(a).
The output stream from this kernel has the same dimension as the
coefficient stream. After performing the multiplication of the two
streams, the reduce kernel shown in Figure 3(b) is used to complete
the original problem of the matrix vector multiplication. The reduction
process represents the addition after the row-column multiplication in
the matrix vector multiplications process. In the BICG algorithm, the
process of the matrix vector multiplications starts by an initial guess
Xo and go through a set of iterations until convergence is achieved and
the approximated solution of the unknown vector X is obtained. It is
noticed that, as the size of the coefficient matrix A increase, the BICG
algorithm takes more iterations for convergence, and as a result, the
simulation time increase significantly both for CPU and GPU.

kernel void sparse_matrix_multiplication ( float index_x<>, float index_y<>,  double2 X[ ][ ], double2 A<>, out double2 c<> ) 

{

     c.x=A.x*X[index_x][index_y].x-A.y*X[index_x][index_y].y;  // real part

     c.y=A.y*X[index_x][index_y].x+A.x*X[index_x][index_y].y; // imaginary part

}

(a)

reduce void sum (double2 c<>, reduce double2 result<>)

 { 

  result.x += c.x; 

  result.y += c.y; 

}

(b)

Figure 3. A sample for kernels written for sparse matrix vector
product on the GPU using brook+. (a) Sparse matrix vector
multiplication kernel. (b) Reduce kernel.
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5. NUMERICAL RESULTS

In this section, the performance of the FDFD GPU-based code will be
investigated and compared with the FDFD CPU-based code both for
2D case and the 3D case. Comparison will include the runtimes for the
calculations of the radar cross section area from 2D and 3D structures.
For the 2D case, the radar cross section area is given by:

σ2D−TM = lim
ρ→∞ 2πρ

∣∣Escat
∣∣2

|Einc|2 , σ2D−TE = lim
ρ→∞ 2πρ

∣∣Hscat
∣∣2

|H inc|2 (16)

and for 3D case

σ3D = lim
ρ→∞ 4πr2

∣∣Escat
∣∣2

|Einc|2 (17)

A Pentium 4 computer with 3.4GHz processor and 2 GB DDR2 type
RAM is used. It has ATI RadeonTM HD 4870 graphical card with the
specifications are shown in Table 1.

Figure 4 illustrates a 2D metamaterial layer contains 64 cells.
Each cell consists of 3× 3 C-shape conducting cylinders. The C-shape
cylinder has inner radius ra = 0.08λ, outer radius rb = 0.1λ and notch
of size 0.02λ. For all the 2D calculations, 10 UPML cells are used. In
order to represent the notch of the size 0.02λ, the space discretization
steps are selected to be ∆x = ∆y = 0.0067λ. Each 3× 3 C-shape
conducting cylinders occupy a domain size Nx×Ny equal to 160× 160
Yee cells. The bistatic RCS of one cell is calculated and compared
with [20], as shown in Figure 5. An incident TM -plane wave at
(φ = 90◦, and f = 300MHz) is used. The FDFD method implemented

Table 1. ATI RadeonTM HD 4870-GPU specifications.

Graphical Bus 2.0× 16 bus interface
VRAM 1024MB GDDR5 RAM
Flops 1200 GFlops

GPU’s core clock 750MHz
GPU’s memory clock 1800MHz

Memory Bandwidth (GB/s) 115.2GB/sec
Texture fill rate 30000Mtexels/sec

Maximum texture size 8192× 8192
Number of stream processors 800 stream processors
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(a) (b) (c) 

 
x

y  

Figure 4. Two dimension metamaterial layers consisting of 8 blocks
each block is a group of 3×3 C-shape conducting cylinders. (a) 2D
layer consists of 8× 8 cells, (b) one cell consists of 3× 3 C-shape, (c)
C-shape conducting cylinder with rb = 0.1λ, ra = 0.08λ.
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Figure 5. Bistatic RCS of one
cell 2D metamaterial layer, φi =
90◦ and f = 300 MHz.

Figure 6. Performance compari-
son between the 2D-FDFD GPU-
based and the 2D-FDFD CPU
based.

on both the GPU and the CPU is considered for the calculated results.
Good agreements are obtained with the published results.

As the number of cells increase, the number of the unknowns
increases. Figure 6 shows a comparison between the runtime of the
results of the FDFD GPU-based and that for FDFD CPU-based as
the number of unknowns increases. The distance between any two
successive cells is 1λ.

Table 2 shows an exhaustive test of the time cost and acceleration
ratio of the algorithm. The maximum acceleration ratio for the 2D case
is beyond 41. Table 3 shows the results obtained in Table 2 when it’s
normalized to the values of the first row. It is clear that the increase
in the number of unknowns causes a real fast increase in the CPU time
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needed, but it has a slow increase in the GPU time needed. This is of
course attributed to the parallel computing base for the GPU.

Table 2. Performance comparison between GPU/CPU FDFD.

2D

Number of Unknowns
Time (seconds)

Acceleration RatioCPU GPU
160× 160 109.81 42.08 2.61
310× 310 866.44 74.78 11.59
460× 460 2482.60 109.28 22.72
610× 610 5329.50 209.18 25.48
760× 760 8337.40 238.23 35
910× 910 10002.00 322.50 31.01

1060× 1060 16914.00 574.53 29.44
1210× 1210 26591.00 646.37 41.13

Table 3. Normalized performance.

Normalized
number of
unknowns

Normalized
CPU time

Normalized
GPU Time

1 1 1
3.75 7.89 1.77
8.26 22.60 2.59
14.53 48.53 4.97
22.56 75.92 5.66
32.34 91.08 7.66
43.89 154.02 154.02
57.19 242.15 15.36

Figure 7 illustrates the geometry of one cell 2D layer when the
shape of the conducting cylinders is changed to be square and triangle
shapes. Figure 8 shows the comparison of bistatic radar cross section
(BiRCS) of one cell 2D layer, (φi = 90◦, and f = 300 MHz,) for
conducting cylinders with different shapes, C-shape, square shape,
triangle shape for the dimensions given in Figure 4 and Figure 7. Little
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variations in the RCS are noticed when the shape is changed. The
change is mainly at φ = 90 and 270. Also, it is clear that the radar
cross section is related to the physical dimensions of the conducting
cylinder cross sectional area. It is higher for the square and lower for
the equilateral triangle. The effect of changing the notch size d0 on the
RCS calculations for the case of the square shape conducting cylinder
is investigated. Three cases are considered for d0 = 0.0λ, 0.02λ, and
0.2λ in Figure 9. The BiRCS has approximately the same shape. This
is due to the small current distribution along the notch element that
results in little variations in the RCS. Figure 10 shows BiRCS for the
conducting cylinder with square shape for different edge lengths d1

with d2 = 0.3λ and d0 = d1/10. As the edge length d1 decrease
the RCS decrease. The effect of changing the spacing between the
square elements d2 in the unit cell with the other dimensions fixed as
in Figure 7 is shown in Figure 11, there is a significant change in the

(c) (d)

(a) (b)

Figure 7. Geometry of one cell consisting of conducting cylinder
with square shape and conducting cylinder with triangle shape. (a)
Conducting cylinder with square shape with d0 = 0.02λ, d1 = 0.2λ, (b)
one cell 2D layer consists of 3 × 3 elements d2 = 0.3λ, (c) conducting
cylinder with triangle shape d0 = 0.02λ, d1 = 0.2λ, (d) one cell 2D
layer consists of 3× 3 elements d2 = 0.3λ.
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RCS of the unit cell. This is because when the separation between
the elements is small compared to the wavelength, there is an induced
current that is concentrated mainly around the contour that surrounds
the unit cell. As the separation between the elements increases, the
induced current distribution on the unit cell changes and there will be
an induced current that is distributed over the whole elements of the
unit cell.

Figure 12 compares the measured bistatic radar cross section
of a metallic cube [21] with the corresponding bistatic radar cross

Figure 8. Comparison of bistatic
RCS of one cell 2D layer, φi =
90◦, and f = 300 MHz for
cylindrical, square, and triangle
element shapes.

Figure 9. The effect of the notch
size on the Bistatic RCS for one
cell consisting of 3× 3 conducting
cylinder with square shape.

Figure 10. The effect of the edge
length d1 on the Bistatic RCS for
one cell consisting of 3× 3 square
elements.

Figure 11. The effect of the el-
ements spacing d2 on the Bistatic
RCS for one cell consisting of 3×3
square elements.
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Figure 12. Bistatic RCS of a
metallic cube with an edge length
of 0.755λ.

Figure 13. Performance compar-
ison between the 3D-FDFD GPU
based and the 3D-FDFD CPU
based.

section computed by the FDFD method. The metallic cube have
an edge length of 0.755λ and it is illuminated by an incident plane
wave with (θ = 180◦, φi = 0◦ and f = 300 MHz). The space
discretization steps used to represent the cube in the FDFD method
are ∆x = ∆y = ∆z = 0.126λ and 7 UPML cells are used to truncate
the domain. Again, good agreements are obtained with the published
results. To compare the performance of the 3D FDFD CPU-based
code and the 3D FDFD GPU-based code the same cube is used but

Table 4. Performance comparison between GPU/CPU FDFD.

3D

Number of Unknowns
Time (seconds)

Acceleration Ratio
CPU GPU

32× 32× 32× 3 57.20 7.87 7.27
36× 36× 36× 3 119.36 12.90 9.25
40× 40× 40× 3 211.77 15.37 13.78
44× 44× 44× 3 393.39 20.92 18.8
48× 48× 48× 3 607.31 33.07 18.36
52× 52× 52× 3 1141.50 42.20 27.05
56× 56× 56× 3 1391.00 61.87 22.48
60× 60× 60× 3 2002.20 80.17 24.97
64× 64× 64× 3 2913.80 114.73 25.40
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Table 5. Normalized performance.

Normalized
number of
unknowns

Normalized
CPU time

Normalized
GPU time

1 1 1
1.42 2.08 1.63
1.95 3.70 1.95
2.59 6.87 2.65
3.37 10.61 4.20
4.29 19.95 5.36
5.35 24.31 7.86
6.59 35.00 10.18
8 50.94 14.57

the number of the unknowns to be solved is increased gradually by
reducing the space discretization steps. Figure 13 shows a comparison
between the time period that the 3D-FDFD GPU based code consumes
compared with the time period for the 3D FDFD CPU-based code for
different number of unknowns. As the number of unknowns increases
the performance of the GPU exceeds that of the CPU and a speed
up factor of about 25 is achieved for the considered case. It can be
noticed that for the 3D case, the maximum number of unknowns that
can be carried on the available GPU is less than that of the 2D case
because of the difference in the amount of storage space required for
the coefficient matrix A on the GPU RAM. A cache miss problem will
arise when the number of the unknowns exceeds the on board RAM
of the GPU. Table 4 shows the time cost and the acceleration ratio of
the algorithm as the number of unknowns is increased. Table 5 shows
the results obtained in Table 4 when it’s normalized to the values of
the first row. It is clear that the increase in the number of unknowns
causes a real fast increase in the CPU time needed compared with
the slow increase in the GPU time needed. For example, when the
number of the unknowns is doubled, the convergence rate of the CPU
time increased by 3.7 times, but for the GPU, the convergence rate
took 1.95 times. Also, it is noticed that the convergence rate is almost
linear for the GPU-based code. Figure 14 shows the bistatic RCS for
a conducting sphere of diameter 0.5λ located inside a dielectric cube
of edge length= 0.755λ with relative dielectric constant εr = 4 and
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the incident plane wave has (θ = 180◦, φ = 0◦, and f = 300 MHz).
The FDFD CPU-based code took 5054 second to converge while the
FDFD GPU-based code took 361 second. The speed up factor in this
example is 14 times. This means that the speed up factor depends on
the shape, the material, and the size of the object.

Figure 14. Bistatic RCS of a conducting sphere of a diameter = 0.5λ
inside a dielectric cube with an edge length of 0.755λ and εr = 4.

6. CONCLUSION

In this paper, 2D and 3D FDFD codes are developed to run on GPU.
A comparison between the CPU based-code and the GPU based code,
based on the calculation of RCS for targets in 2D and 3D cases, showed
a speed up factor up to 40 for the calculations performed on the GPU
for the selected examples. If the problem size (number of unknowns)
increases the speed up factor could increase more. The two limiting
factors that could limit the current problem size are the on board
RAM of the graphical cards and the maximum texture size that can
be handled. However the on board RAM of the graphical cards is
the more effective for the FDFD problem. Also, the use of the GPU
based computation, allows the change of the different parameters of the
metamaterial structure. It has become clear that the main parameter
that significantly affects the RCS of the metamaterial structure is the
separation between the elements of the metamaterial structure and the
details of the structure has no-significant effect on the RCS.
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