Vol. 6
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-04-04
Influence of Motion on the Edge-Diffraction
By
Progress In Electromagnetics Research B, Vol. 6, 153-168, 2008
Abstract
The aim of the present paper is to reveal the effect of motion on the scattering by an edge. To this end one considers a canonical structure formed by a perfectly conducting half-plane illuminated by a time-harmonic and uniformly moving infinitely long line source. The relevant line source is located parallel to the edge and moves with a constant velocity which is also parallel to the half-plane. This is the dual of a previously studied problem in which the halfplane was moving uniformly. The present problem is first reduced into a Wiener-Hopf problem in the sense of distribution and then solved by an ad-hoc method. The edge-diffracted field is discussed in detail.
Citation
Mithat Idemen, and Ali Alkumru, "Influence of Motion on the Edge-Diffraction," Progress In Electromagnetics Research B, Vol. 6, 153-168, 2008.
doi:10.2528/PIERB08031210
References

1. Pauli, W., Theory of Relativity, Pergamon Press, New York, 1958.

2. Yeh, C., "Reflection and transmission of electromagnetic waves by moving dielectric medium," J. of Appl. Phys., Vol. 36, 3513-3517, 1965.
doi:10.1063/1.1703029

3. Lee, S. W. and Y. T. Lo, "Reflection and transmission of electromagnetic waves by moving uniaxially anisotropic medium," J. of Appl. Phys., Vol. 8, 870-875, 1967.
doi:10.1063/1.1709427

4. Van Bladel, J., Relativity and Engineering, Springer-Verlag, New York, 1984.

5. Censor, D., "Broadband spatiotemporal differential-operator representations for velocity depending scattering," Progress In Electromagnetics Research, Vol. 58, 51-70, 2006.
doi:10.2528/PIER05052502

6. Lee, S. W. and R. Mittra, "Scattering of electromagnetic waves by a moving cylinder in free space," Canadian J. of Phys., Vol. 45, 2999-3007, 1967.

7. Censor, D., "Scattering of electromagnetic waves by a cylinder moving along its axis," Microwave Theory and Techn., Vol. 17, 154-158, 1969.
doi:10.1109/TMTT.1969.1126914

8. De Zutter, D. and J. Van Bladel, "Scattering by cylinders in translational motion," IEE Microwaves, Optics and Antennas, Vol. 1, 192-196, 1977.

9. Borghi, R., F. Gori, M. Santersiero, F. Frezza, and G. Schettini, "Plane wave scattering by conducting cylindernear a plane surface: A cylindrical wave approach," J. Optical Soc. Amer. - A, Vol. 13, 483-493, 1996.

10. Idemen, M. and A. Alkumru, "Influence of the velocity on the energy patterns of moving scatterers," Journal of Electromagnetic Waves and Applications, Vol. 18, 3-22, 2004.
doi:10.1163/156939304322749580

11. Tsandoulas, G. N., "Low-frequency diffraction by mowing conducting strips," J. Opt. Soc. Amer., Vol. 59, 1357-1360, 1969.
doi:10.1109/TAP.1972.1140331

12. Hunter, J. D., "High-frequency diffraction by a moving conducting strip," IEEE Trans. Antennas and Propagat., Vol. 20, 792-794, 1972.
doi:10.1029/RS006i006p00655

13. Lang, K. C., "Diffraction of electromagnetic waves by a moving impedance wedge," Radio Sci., Vol. 6, 655-663, 1971.
doi:10.1163/156939302X01182

14. De Cupis, P., P. Burghignoli, G. Gerosa, and M. Marziale, "Electromagnetic wave scattering by a perfectly conducting wedge in uniform translational motion," Journal of Electromagnetic Waves and Applications, Vol. 16, 345-364, 2002.

15. Tsandoulas, G. N., "Electromagnetic diffraction by a moving wedge," Radio Sci., Vol. 3, 887-893, 1968.
doi:10.1109/TAP.2006.884305

16. Idemen, M. and A. Alkumru, "Relativistic scattering of a plane-wave by a uniformly moving half-plane," IEEE Trans. Antennas and Propagat., Vol. 54, 3429-3440, 2006.

17. Ott, R. H. and G. Hufford, "Scattering by an arbitrarily shaped conductor in uniform motion relative to the source of an incident spherical wave," Radio Sci., Vol. 3, 857-861, 1968.
doi:10.1029/RS007i002p00331

18. Censor, D., "Scattering in velocity-dependent systems," Radio Sci., Vol. 7, 331-337, 1972.
doi:10.1163/156939300X00969

19. De Cupis, P., G. Gerosa, and G. Schettini, "Electromagnetic scattering by an object in relativistic translational motion," Journal of Electromagnetic Waves and Applications, Vol. 14, 1037-1062, 2000.
doi:10.1063/1.1665539

20. Twerski, V., "Relativistic scattering of electromagnetic waves by moving obstacles," J. Math. Phys., Vol. 12, 2328-2341, 1971.
doi:10.1016/0022-460X(72)90599-8

21. Censor, D., "Scattering by time-varying obstacles," J. Sound Vibration, Vol. 25, 101-110, 1972.
doi:10.1063/1.524853

22. Michielsen, B. L., G. C. Herman, A. T. de Hoop, and D. De Zutter, "Three-dimensional relativistic scattering of electromagnetic waves by an object in uniform translation motion," J. Math. Phys., Vol. 22, 2716-2722, 1981.
doi:10.1109/TAP.1986.1143938

23. Tzikas, A. A., D. P. Chrissoulidis, and E. E. Kriezis, "Relativistic bistatic scattering by a uniformly moving random rough surface," IEEE Trans. Antennas and Propagat., Vol. 34, 1046-1052, 1986.
doi:10.1007/BF00385766

24. De Zutter, D., "Fourier analysis of the signal scattered by objects in translational motion, Part I and II," Appl.Sci. Res., Vol. 36, 241-269, 1980.

25. Rabinovich, V. S. and I. Miranda, "Non uniformly moving source in electromagnetic waveguides," Proceedings of Day on Diffraction, 193-202, 2003.
doi:10.1143/JJAP.45.4847

26. Shimura, T., H. Ochi, and Y. Watanabe, "Time-reversal communication with moving source-receiver in shallow water," Jap. J. Appl. Phys., Vol. 45, 4847-4852, 2006.

27. Moeller, C., The Theory of Relativity, 2nd Ed., Oxford University Press, London, 1972.

28. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons Inc., New York, 1990.

29. Idemen, M., Confluent Edge Conditions for the Electromagnetic Wave at the Edge of a Wedge Bounded by Material Sheets, Wave Motion, Vol. 2, No. 1, 37-55, 2000.

30. Noble, B., Methods Based on the Wiener-Hopf Techniques, Pergamon, Oxford, 1958.

31. Gel’fand, I. M. and G. E. Shilov, Les Distributions, Dunod, Paris, 1962.

32. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, 5th Ed., Academic Press, New York, 1994.