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Abstract—The aim of the present paper is to reveal the effect of
motion on the scattering by an edge. To this end one considers
a canonical structure formed by a perfectly conducting half-plane
illuminated by a time-harmonic and uniformly moving infinitely long
line source. The relevant line source is located parallel to the edge and
moves with a constant velocity which is also parallel to the half-plane.
This is the dual of a previously studied problem in which the half-
plane was moving uniformly. The present problem is first reduced into
a Wiener-Hopf problem in the sense of distribution and then solved by
an ad-hoc method. The edge-diffracted field is discussed in detail.

1. INTRODUCTION

Since the establishment of the electromagnetic theory in 1873, the
scattering of electromagnetic waves has become more and more
interesting for scientists and engineers. So far a great deal of problems
have been formulated and investigated by considering various media
and scatterers. In most of these problems the scatterers and sources
were assumed to be at rest with respect to the observer. But the
applications of the contemporary technology need the consideration
of cases where the scatterers and/or the sources are in motion with
respect to the observer. The communication satellites, guided missiles,
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modern swift vehicles and mobile antennas can be enumerated among
simple examples.

An exact analysis for the case where the motion is accelerated
can only be formulated in the framework of the General Theory of
Relativity, which causes rather tough and complicated mathematical
difficulties. Therefore, the works devoted to this kind of problems are
very few in the open literature. However, when the motion is uniform,
an exact analysis can sometimes be done with simple mathematical
tools by using the concepts of the Special Theory of Relativity. So, in
the open literature, there are many interesting works devoted to the
case of uniformly moving scatterers. Among them one can enumerate,
for example those which concern moving half-spaces or planes [1–
5], cylinders [5–10], strips [11, 12], wedges [13–15], half-planes and
edges [16] and bodies of arbitrary shapes [5, 17–24]. A recent analysis
performed in [16], which considers the scattering of a plane wave by a
uniformly moving half-plane reveals the effect of the motion on the
reflection, refraction, aberration, frequency shift, etc. The planar
structure of the incident wave considered in [16] permitted one to
reduce the problem into the solution of Helmholtz equation which is
much more simple as compared to the time-depending wave equation.
If the wave is not planar, it is not possible to benefice of the advantages
provided by the complex representation of the monochromatic waves.
In such a case it seems better to assume that it is the source which
is in motion. As far as we know, the investigations devoted to this
case also is very few in the available literature. [25, 26] can be cited as
significant examples on this subject.

The aim of the present paper is the investigation of the effect
of motion on the edge diffraction of a cylindrical wave. To this end
one considers the canonical structure formed by a perfectly conducting
half-plane illuminated by a uniformly moving infinitely long line source.
One assumes that the line source is located parallel to the edge of the
half-plane and moves in a direction which is parallel to the half-plane.

In what follows, in Section 2 one formulates the problem in its
most general form. In Sections 3 and 4 one considers the solution of
the problem and analysis of the excited fields, respectively. Finally, in
Section 5 one presents an illustrative example to see the variation of
the edge-diffracted wave with respect to normalized time.

2. FORMULATION OF THE PROBLEM

Consider two cartesian co-ordinate systems Oxyz and O′x′y′z′ which
are denoted by K and K ′, respectively. In K one assumes that
the half-plane P ≡ {x ∈ (−∞, 0), y = 0, z ∈ (−∞,∞)} consists
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of a perfectly conducting sheet. In K ′an infinitely long line source
S ≡ {x′ = a, y′ = b, z′ ∈ (−∞,∞)} emits a cylindrical wave of ω′.
In the problem to be addressed in this work the line source S (and
K ′) makes a uniform rectilinear motion in vacuum with respect to the
half-plane P (and K) (see Fig. 1). Then the problem consists of the
investigation of the scattered wave to be observed in K. To this end we
first use the well-known Lorentz transformation formulas to transform
the expressions of the charge and current densities given in K ′ into K,
and then consider and solve the problem in K.

Figure 1. A source moving with velocity υ = υex.

Let the clocks in K and K ′ are so adjusted that O ≡ O′ when
t = t′ = 0. Here t and t′ show the times measured in K and K ′,
respectively. We assume that the incident wave is generated by the
current and charge densities given as follows:

ρ′ = 0, (1a)
�J ′ = I cos(ω′t′ − ϕ)δ(x′ − a)δ(y′ − b)�ez. (1b)

Here �ez shows the unit co-ordinate vector in the direction of O′z′-
axis while δ(.) is the usual Dirac distribution. In accordance with the
Special Theory of Relativity one writes then (see [27] or [28])

x′ = γ(x− vt), y′ = y, z′ = z, t′ = γ(t− vx/c2) (2)

�J = �J ′ − [1 − γ]( �J ′ · �v) �v

v2
+ γρ′�v (3a)

and
ρ = γ(ρ′ + �J ′ · �v/c2). (3b)

Here γ stands for

γ =
1√

1 − v2/c2
. (4)

From (1a)–(3b) one gets

ρ = 0, (5a)
�J = I cos(ωt− ωvx/c2 − ϕ)δ(xγ − a− γvt)δ(y − b)�ez. (5b)
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In the expressions given above �ex is the unit co-ordinate vector parallel
to Ox-axis, �v = v�ex is the velocity of the source S, c is the velocity of
the wave in the free-space while ω denotes

ω = γω′. (5c)

From the expressions of the source densities given by (5a), (5b) one
concludes that the electric fields of both the incident and the scattered
waves are parallel to the edge. If the total electric field is written as

�E(x, y, t) = u(x, y, t)�ez, (6)

then the function u(x, y, t) satisfies the non-homogeneous wave
equation

∆u− 1
c2

∂2u

∂t2
= µ

∂( �J · �ez)
∂t

= −µI[ω sin(ωt− ωvx/c2 − ϕ)δ(xγ − a− γvt)
+γv cos(ωt− ωvx/c2 − ϕ)δ′(xγ − a− γvt)]δ(y − b)

(7a)

in the sense of distribution outside the half-plane P under the
continuity, boundary and radiation conditions given as follows:

u(x,+0, t) = u(x,−0, t); x, t ∈ (−∞,∞) (7b)
∂

∂y
u(x,+0, t) =

∂

∂y
u(x,−0, t); x > 0, t ∈ (−∞,∞) (7c)

u(x,+0, t) = u(x,−0, t) = 0; x < 0, t ∈ (−∞,∞) (7d)

u(x, y, t) ∼ outgoing wave for r =
√

x2 + y2 → ∞, t ∈ (−∞,∞). (7e)

In (7a) δ′ denotes the derivative of delta Dirac function with respect
to its argument.

3. SOLUTION OF THE PROBLEM

Let the double Fourier transform of the function u(x, y, t) with respect
to x and t, say û(α, y, β), be defined via

û(α, y, β) =
∞∫

x=−∞

∞∫
t=−∞

u(x, y, t)eiβteiαxdtdx, β ∈ (−∞,∞), α ∈ L.

(8a)
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The inverse transform is then

u(x, y, t) =
1

(2π)2

∞∫
β=−∞

∫
L

û(α, y, β)e−iαxe−iβtdαdβ. (8b)

Here L denotes the real axis indented above (−β/c) and below (β/c)
as shown in Fig. 2.

(a) The case when β > 0 (b) The case when β < 0

Figure 2. The integration line L in the complex α-plane.

The application of the double transformation (8a) to (7a) yields

d2û

dy2
− λ2(α, β)û = K(α, β)δ(y − b), β ∈ (−∞,∞), α ∈ L, (9)

where λ(α, β) stands for the square-root function

λ(α, β) =
√

α2 − β2/c2 (10)

defined in the complex α-plane cut as shown in Fig. 2 with the
condition λ(0, β) = −iβ/c while K(α, β) is given by

K(α, β) =
iπµI

γ
eiαa/γ

[(
ω

γ2
+ αv

)
e
−i

(
ωva
γc2

+ϕ

)
δ

(
β +

ω

γ2
+ αv

)

−
(

ω

γ2
− αv

)
e
i

(
ωva
γc2

+ϕ

)
δ

(
β − ω

γ2
+ αv

)]
. (11)

The solution of (9), which satisfies the radiation condition (7e) is given
by

û(α, y, β) =




A(α, β)e−λ(α,β)y ; y > b

B(α, β)e−λ(α,β)y + C(α, β)eλ(α,β)y ; 0 < y < b

D(α, β)eλ(α,β)y ; y < 0.
(12)
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The expressions of the coefficients A(α, β), B(α, β), C(α, β) and
D(α, β) can be obtained through the relations required by (9) and
(7b)–(7d), which yield

A(α, β)e−λ(α,β)b −B(α, β)e−λ(α,β)b − C(α, β)eλ(α,β)b = 0 (13a)

A(α, β)e−λ(α,β)b−B(α, β)e−λ(α,β)b+C(α, β)eλ(α,β)b=−K(α, β)
λ(α, β)

(13b)

B(α, β) + C(α, β) −D(α, β) = 0 (13c)
D(α, β) = Φ+(α, β) (13d)

B(α, β) − C(α, β) + D(α, β) = −Φ−(α, β)
λ(α, β)

. (13e)

The functions Φ+(α, β) and Φ−(α, β) appearing in (13d)–(13e) are yet
unknown and defined by

Φ+(α, β) =
∞∫
0


 ∞∫
−∞

u(x, 0, t)eiβtdt


 eiαxdx (14a)

and

Φ−(α, β) =
0∫

−∞


 ∞∫
−∞

[
∂

∂y
u(x,+0, t) − ∂

∂y
u(x,−0, t)

]
eiβtdt


 eiαxdx.

(14b)
From (14a)–(14b) it is obvious that the functions Φ+(α, β) and
Φ−(α, β) are regular in the upper half-plane 
α > 0 and in the lower
half-plane 
α < 0, respectively. Moreover, since u(x, 0, t) = O(1)
when x → +0 while ∂

∂yu(x,±0, t) = O(x−1/2) when x → −0 [29], the
functions Φ±(α, β) have also the following asymptotic behaviors when
α → ∞ [30]:

Φ+(α, β) = O(1/α) as α → ∞ in 
α > 0 (15a)

Φ−(α, β) = O(α−1/2) as α → ∞ in 
α < 0. (15b)

From (13a)–(13b) one gets

C(α, β) = −K(α, β)
2λ(α, β)

e−λ(α,β)b (16a)

and
A(α, β) = B(α, β) − K(α, β)

2λ(α, β)
eλ(α,β)b. (16b)
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This shows that the coefficient C(α, β) is known beforehand and
A(α, β) is obtained in terms of B(α, β) which can be expressed by
the use of (13c)–(13e) as

B(α, β) = Φ+(α, β) +
K(α, β)
2λ(α, β)

e−λ(α,β)b (17a)

and

B(α, β) = −Φ+(α, β) − Φ−(α, β)
λ(α, β)

− K(α, β)
2λ(α, β)

e−λ(α,β)b. (17b)

To determine Φ+(α, β) and Φ−(α, β) appearing in (17a)–(17b) one
has to eliminate B(α, β) through these equations. Thus, one gets a
functional equation of the Wiener-Hopf type satisfied by Φ+(α, β) and
Φ−(α, β), namely:

Φ−(α, β)
λ(α, β)

+ 2Φ+(α, β) = −K(α, β)
λ(α, β)

e−λ(α,β)b, α ∈ L. (18)

By substituting the expression of λ(α, β) and K(α, β) given by (10) and
(11) into (18) and multiplying both sides of this equation by

√
α + β/c

one gets

Φ−(α, β)√
α− β/c

+ 2Φ+(α, β)
√

α + β/c = f1(β)δ(α− β1) + f2(β)δ(α− β2)

(19)
where β1 and β2 are given by

β1 = −1
v
(β + ω/γ2), (20a)

β2 = −1
v
(β − ω/γ2). (20b)

In (19) the functions f1(β) and f2(β) refer to

f1(β) =
iπµI

γ|v| e
−i

(
ωva
γc2

+ϕ

)
βe−λ1(β)beiaβ1/γ√

β1 − β/c
(21a)

and

f2(β) =
iπµI

γ|v| e
i

(
ωva
γc2

+ϕ

)
βe−λ2(β)beiaβ2/γ√

β2 − β/c
(21b)

with

λ1(β) = λ(β1, β) =

√(
β

v
+

ω

vγ2

)2

− β2

c2
(22a)
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and

λ2(β) = λ(β2, β) =

√(
β

v
− ω

vγ2

)2

− β2

c2
. (22b)

Here it is worthwhile to remark that in order to obtain the
expressions given by (20a), (20b) and (21a), (21b), the following
identities related to Dirac distribution have also been considered:

δ(vα + ζ) =
1
|v|δ

(
α +

ζ

v

)
, (23a)

f(α)δ(α− ζ) = f(ζ)δ(α− ζ). (23b)

It is obvious that the expression given by (19) constitutes a Wiener-
Hopf equation which involves Dirac distributions. To solve this kind
of an equation with respect to the parameter α one can use the well-
known Plemelj-Sokhotski formulas [31] which yields

δ(α) =
1

2πi

[
1

α− i0
− 1

α + i0

]
=

1
2πi

lim
ε→+0

[
1

α− iε
− 1

α + iε

]
. (24)

With the use of (24), the functional equation (19) can be rewritten as

Φ−(α, β)√
α− β/c

+ 2Φ+(α, β)
√

α + β/c = f+(α) + f−(α), (25a)

where the functions f+(α) and f−(α) which are regular in the upper
half-plane 
α > 0 and in the lower half-plane 
α < 0, respectively,
are defined by

f+(α) = − 1
2πi

lim
ε→+0

[
f1(β)

α− β1 + iε
+

f2(β)
α− β2 + iε

]
(25b)

and
f−(α) =

1
2πi

lim
ε→+0

[
f1(β)

α− β1 − iε
+

f2(β)
α− β2 − iε

]
. (25c)

Thus functions Φ+(α, β) and Φ−(α, β) are determined immediately
through the classical Wiener-Hopf technique [30], namely:

Φ+(α, β) =
i

4π
√

α + β/c

[
f1(β)

α− β1 + i0
+

f2(β)
α− β2 + i0

]
(26a)

and

Φ−(α, β) =
√

α− β/c

2πi

[
f1(β)

α− β1 − i0
+

f2(β)
α− β2 − i0

]
. (26b)

Finally, by substituting (26a), (26b) into (13d) and (17a), (17b), and
considering also (16a,b), all the spectral coefficients taking place in
(12) become determined.
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4. ANALYSIS OF THE FIELD

By inserting first the expressions for the coefficients A(α, β), B(α, β),
C(α, β) and D(α, β), which were obtained in the previous section, into
(12) and then considering (8b) one obtains the expression of the total
field in the whole space. In what follows we will consider the regions
y > b, y ∈ (0, b) and y < 0 separately.

4.1. Waves in the Region y > b

By inserting (16b), (17a) and (12) in (8b) one gets the total field in
the region y > b as follows:

u(x, y, t) = uinc(x, y, t) + uref (x, y, t) + us(x, y, t). (27a)

Here we put

uinc(x, y, t) = − 1
8π2

∞∫
β=−∞

∫
L

K(α, β)
λ(α, β)

e−λ(α,β)(y−b)−iαx−iβtdαdβ (27b)

uref (x, y, t) =
1

8π2

∞∫
β=−∞

∫
L

K(α, β)
λ(α, β)

e−λ(α,β)(y+b)−iαx−iβtdαdβ (27c)

and

us(x, y, t) =
1

4π2

∞∫
β=−∞

∫
L

Φ+(α, β)e−λ(α,β)y−iαx−iβtdαdβ. (27d)

If one inserts the expression of K(α, β) given by (11) into the integrand
of (27b) and evaluates the resulting integral on L, then one gets

uinc(x, y, t) =
iµI

8πγ|v|e
−i

(
ωva
γc2

+ϕ

) ∞∫
β=−∞

βe
−λ1(β)(y−b)+i

(
β
v
+ ω

vγ2

)(
x− a

γ

)
−iβt

λ1(β)
dβ

+
iµI

8πγ|v|e
i

(
ωva
γc2

+ϕ

) ∞∫
β=−∞

βe
−λ2(β)(y−b)+i

(
β
v
− ω

vγ2

)(
x− a

γ

)
−iβt

λ2(β)
dβ.

(28)

One can easily check that uinc(x, y, t) given by (28) is nothing but the
solution to the equation (9) in the homogeneous space not involving
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the half-plane P . Therefore it is the wave emitted by the moving line
source i.e., “the incident wave”.

By repeating the same procedure which transformed (27b) to (28)
for uref (x, y, t) given by (27c) one obtains also

uref(x, y, t) =− iµI

8πγ|v|e
−i

(
ωva
γc2

+ϕ

) ∞∫
β=−∞

βe
−λ1(β)(y+b)+i

(
β
v
+ ω

vγ2

)(
x−a

γ

)
−iβt

λ1(β)
dβ

− iµI

8πγ|v|e
i

(
ωva
γc2

+ϕ

) ∞∫
β=−∞

βe
−λ2(β)(y+b)+i

(
β
v
− ω

vγ2

)(
x− a

γ

)
−iβt

λ2(β)
dβ.

(29)

A comparison of (29) with (28) shows that uref (x, y, t) is obtained
from uinc(x, y, t) by making the substitution I → −I and b → −b in
(28). Therefore uref (x, y, t) can be interpreted as the field which is
created by the image source. In other words, uref (x, y, t) consists of
the wave reflected from the conducting plane P . It is also important
to emphasize that in some region of the space this reflected wave
will be cancelled by a pole contribution which will appear during the
evaluation of the integral in (27d).

As to the last term in (27a), from (27d) and (26a) one writes it as

us(x, y, t) =
i

16π3

∞∫
β=−∞

∫
L

[
f1(β)

α−β1+i0
+

f2(β)
α−β2+i0

]
e−λy−iαx−iβt√

α + β/c
dαdβ.

(30)
To recast the latter into more propitious form, we make the
substitutions

α = −β

c
cos τ, λ(α, β) = −i

β

c
sin τ, dα =

β

c
sin τdτ (31a)

and

x = R cosφ, y = R sinφ; R =
√

x2 + y2, φ ∈ (0, π) (31b)

which map the integration line L onto Λ shown in Fig. 3. Thus we
have

us(x, y, t) =
√
c

16iπ3

∞∫
β=−∞

β−1/2f1(β)e−iβt
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(a) The case when β > 0 (b) The case when β < 0

Figure 3. The integration line Λ and the steepest descent line Λs in
the complex τ -plane.

×

∫

Λ

sin τei
β
c
R cos(τ−φ)

(cos τ + β̃1)
√

1 − cos τ
dτ


 dβ

+
√
c

16iπ3

∞∫
β=−∞

β−1/2f2(β)e−iβt

×

∫

Λ

sin τei
β
c
R cos(τ−φ)

(cos τ + β̃2)
√

1 − cos τ
dτ


 dβ (32a)

with
β̃1 =

c

β
β1, β̃2 =

c

β
β2. (32b)

Now let us use the Cauchy theorem and translate Λ onto the steepest-
descent line Λs which passes through the saddle point τs = φ. When
β > 0, one has τs = φ < τ2 = arccos(−β̃2) and crosses the pole at
τ2 = arccos(−β̃2) in translating Λ onto Λs (see Fig. 3(a)). Conversely,
when β < 0, one has τs = φ < τ1 = arccos(−β̃1) and the pole at
τ1 = arccos(−β̃1) is crossed in translating Λ onto Λs (see Fig. 3(b))
when τs = φ > τ1 = arccos(−β̃1) (see Fig. 3(b)). Thus, by taking also
into account the contributions which will come from the poles, (32a)
can be rearranged as follows:

us(x, y, t) = up(x, y, t) + ud(x, y, t) (33)

with
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up(x, y, t) =

1
8π2

∞∫
β=−∞

[
f1(β)

e−λ1(β)y−iβ1x−iβt√
β1 + β/c

+ f2(β)
e−λ2(β)y−iβ2x−iβt√

β2 + β/c

]
dβ (34a)

and

ud(x, y, t) =
√
c

16iπ3

∞∫
β=−∞

β−1/2f1(β)e−iβt


∫
Λs

sin τei
β
c
R cos(τ−φ)

(cos τ + β̃1)
√

1 − cos τ
dτ


 dβ

+
√
c

16iπ3

∞∫
β=−∞

β−1/2f2(β)e−iβt


∫
Λs

sin τei
β
c
R cos(τ−φ)

(cos τ+β̃2)
√

1−cos τ
dτ


dβ. (34b)

up(x, y, t) consists of the pole contributions. By using (21a), (21b) in
(34a) one can easily show that

up(x, y, t) = −uref (x, y, t) (35)

in the region defined by τ1 < φ < τ2.
As to the last term ud(x, y, t) in (33), it gives the edge-excited

diffracted wave. The integrals in (34b), written on Λs and β ∈
(−∞,∞) , can be evaluated asymptotically by saddle-point technique
[30] for points far away from the edge. The saddle points connected
with the parameters τ and β are

τs = φ (36)

and

βs = ω

[
1 − v

c

χ(x, y, t)√
b2/γ2 + χ2(x, y, t)

]
, (37)

respectively. Here χ(x, y, t) is given by

χ(x, y, t) = v(t−R/c) + a/γ. (38)

Thus we get finally

ud(x, y, t) ∼ µIb
√
c2 − vc

4γ
√
π

sinφ√
1 − cosφ

1√
R

[b2/γ2 + χ2]−1/2[√
b2/γ2 + χ2 − χ

]1/2
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×

[√
b2/γ2 + χ2 − (v/c)χ

]
[
(v/c− cosφ)

√
b2/γ2 + χ2 − (1 − cosφv/c)χ

]
×�

{
F

[
kβ2

2ω
R

(
φ− arccos(c/v − cω/β2γ

2)
)2

]

× ei
(
3π/4+ϕ+ωR/c+ω

√
b2/γ2+χ2/c−ωt

)}
, (39a)

where F (η) is the following function which can be expressed through
the classical error function [32]:

F (η) =
√
ηe−iηerfc

(
e−iπ/4√η

)
. (39b)

4.2. Waves in the Region 0 < y < b

By replacing first C(α) and B(α) in (12) by their expressions given
by (16a) and (17a) and then inserting the result into (8b) one gets
the expression of the field in the region 0 < y < b. A scrutinization
shows that the terms are identical to the terms obtained in the previous
Section 4.1. Therefore the wave in the region y ∈ (0, b) consists of the
analytical continuation of that in y > b.

4.3. Waves in the Region y < 0

By considering (13d) and (26a) in (12), the total field in the region can
be written from (8b) as follow:

u(x, y, t) =
i

16π3

∞∫
β=−∞

∫
L

[
f1(β)

α−β1+i0
+

f2(β)
α−β2+i0

]
eλy−iαx−βt√

α + β/c
dαdβ.

(40)
By making the same substitutions given by (31a), (31b) for φ ∈ (−π, 0)
and following the same procedure, as explained in the Section 4.1., on
the stage of translation the integration line Λ onto the steepest-descent
line Λs which passes through the saddle point τs = −φ, the field given
by (40) can be rearranged as

us(x, y, t) = up(x, y, t) + ud(x, y, t) (41)

where up(x, y, t) is the expression of the field which is obtained from the
residue contribution of the poles τ1 and τ2. The computation of these
pole contributions shows that up(x, y, t) is identical with the incident
field ui(x, y, t) in the lit region defined by −τ2 < φ < −τ1. In (41)
the term ud(x, y, t) is the diffracted field by the edge whose explicit
expression is given by (37a) through the saddle-point technique.
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5. AN ILLUSTRATIVE EXAMPLE

In order to give an idea about the variation of the edge-diffracted
wave with respect to time normalized by (λ̃/c), one computes the
expression of ud(x, y, t) given by (37a) at the point Q(−λ̃, 10λ̃, 0) for
v = 2c/3, I = 10 mA and a = b = 100λ̃. Here λ̃ and c stands for the
wave-length of the monochromatic wave. Fig. 4. given below shows
this variation in the time interval t ∈ (0, 20λ̃/c).

Figure 4. Variation of the edge diffracted wave with normalized time.

From this figure it is obvious to remark that the edge-excited wave
has always the same oscillation whenever the source is approaching the
observation point or going far away from it. The non-periodic variation
of the wave is also observed.
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