Vol. 30

Latest Volume
All Volumes
All Issues

Constitutive Relations in Inhomogeneous Systems and the Particle-Field Conundrum

By Dan Censor
Progress In Electromagnetics Research, Vol. 30, 305-335, 2001


Recently a general framework has been proposed for constitutive relations. This theoretical approach attempted to represent constitutive relations as spatiotemporal differential operators acting on the physically observable fields. The general statement is sufficiently broad to embrace linear and nonlinear systems, and dispersive as well as inhomogeneous systems. The present study investigates specific examples related to polarizable and chiral media. It was immediately realized that prior to working out the examples, we have to better understand the relation of the kinematics of particles to field concepts. Throughout, the Minkowski space notation and related relativistic ideas are exploited for simpler notation and deeper understanding.


Dan Censor, "Constitutive Relations in Inhomogeneous Systems and the Particle-Field Conundrum," Progress In Electromagnetics Research, Vol. 30, 305-335, 2001.


    1. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.

    2. Kong, J. A., Electromagnetic Wave Theory, Wiley, 1986.

    3. Sommerfeld, A., Mechanics of Deformable Bodies, Academic Press, 1964.

    4. Lamb, H., Hydrodynamics, Dover.

    5. Morse, P. M. and K. U. Ingard, Theoretical Acoustics, McGraw- Hill, 1968.

    6. Love, A. E. H., A Treatise On The Mathematical Theory of Elasticity, Dover.

    7. Sokolnikoff, I. S., "Mathematical Theory of Elasticity," McGraw- Hill, 1956.

    8. Takeuchi, H., Theory of the Earth’s Interior, Blaisdell, 1966.

    9. Sommerfeld, A., Electrodynamics, Academic Press, 1964.

    10. Censor, D., "Electrodynamics, topsy-turvy special relativity, and generalized Minkowski constitutive relations for linear and nonlinear systems," Progress in Electromagnetics Research, Vol. 18, 261-284, 1998.

    11. Minkowski, H., "Die Grundgleichungen f¨ur die elektromagnetischen Vorg¨ange in bewegten Korpern," Nachrichten Ges. Wiss. Gottingen, 53-116, 1908.

    12. Censor, D., "A quest for systematic constitutive formulations for general field and wave systems based on the Volterra differential operators," Progress in Electromagnetics Research, Editor J. A. Kong, Vol. 25, 261–284, 2000.

    13. von Hippel, A., Dielectric Materials and Applications, Artech House, 1995.

    14. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-Isotropic Media, Artech House, 1994.

    15. Sihvola, A. H. and I. V. Lindell, "Material effects in bi-anisotropic electromagnetics," IEICE Trans. on Electronics, Vol. E78-C, 1383-1390, 1995.

    16. Lindell, I. V., S. A. Tretyakov, and A. J. Viitanen, "Plane-wave propagation in a uniaxial chiro-omega medium," Microwave and Optical Technology Letters, Vol. 6, 517-520, 1993.

    17. Tretyakov, S. A., F. Mariotte, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, "Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data," IEEE Transactions on Antennas and Propagation, Vol. 44, 1996.

    18. Sihvola, A. H. and S. A. Tretyakov, "Magnetoelectric interactions in bi-anisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 12, 481-497, 1998.