Vol. 171

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Biosensing Performance of a Plasmonic-Grating-Based Nanolaser (Invited Paper)

By Haoran Zhang, Jiacheng Sun, Jie Yang, Israel De Leon, Remo Proietti Zaccaria, Haoliang Qian, Hongsheng Chen, Gaofeng Wang, and Tao Wang
Progress In Electromagnetics Research, Vol. 171, 159-169, 2021


We introduce and numerically investigate a high-quality resonant structure formed by a dielectric low-order diffraction grating combining materials with high refractive index contrast. The proposed structure is capable of supporting multiple plasmonic modes owing to hybridization effects, modes having the characteristic of exhibiting remarkable sensing response to the change of the environment refractive index yet limited figure of merit. To improve the figure of merit, the proposed architecture is modified by adding a layer of semiconductor gain medium, as it can compensate the internal losses. The result is an active sensor showing multi-modal lasing behaviour, with very low threshold and large mode spacing. It is found that the device shows switchable response upon modification of the pump amplitude or polarization, a very important feature when it comes to sensing devices. Finally, the achieved figure of merit is 3400 RIU-1, one order of magnitude higher than the passive case and much higher than the theoretical limit for sensors based on Kretschmann configuration. Thus, the proposed architecture possesses great potentials as an optical sensor for bio-detection and environmental monitoring.


Haoran Zhang, Jiacheng Sun, Jie Yang, Israel De Leon, Remo Proietti Zaccaria, Haoliang Qian, Hongsheng Chen, Gaofeng Wang, and Tao Wang, "Biosensing Performance of a Plasmonic-Grating-Based Nanolaser (Invited Paper)," Progress In Electromagnetics Research, Vol. 171, 159-169, 2021.


    1. Wang, D., A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, "Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices," Nat. Nanotechnol., Vol. 12, 889-894, 2017.

    2. Wang, K., H. Qian, Z. Liu, and P. K. L. Yu, "Second-order nonlinear susceptibility enhancement in gallium nitride nanowires (Invited)," Progress In Electromagnetics Research, Vol. 168, 25-30, 2020.

    3. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257-2298, 2010.

    4. Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science, Vol. 297, 820-822, 2002.

    5. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, Vol. 302, 419-422, 2003.

    6. Sun, J. C., T. Wang, Z. Jafari, and I. De Leon, "High-Q plasmonic crystal laser for ultra-sensitive biomolecule detection," IEEE J. Sel. Topics Quantum Electron., Vol. 27, 4601407, 2021.

    7. Tao, T., T. Zhi, B. Liu, J. Dai, Z. Zhuang, Z. Xie, P. Chen, F. Ren, D. Chen, Y. Zheng, and R. Zhang, "Manipulable and hybridized, ultralow-threshold lasing in a plasmonic laser using elliptical InGaN/GaN nanorods," Adv. Func. Mater., Vol. 27, 1703198, 2017.

    8. Losurdo, M., Y. Gutiérrez, A. Suvorova, M. M. Giangregorio, S. Rubanov, A. S. Brown, and F. Moreno, "Gallium plasmonic nanoantennas unveiling multiple kinetics of hydrogen sensing, storage, and spillover," Adv. Mater., Vol. 33, 2100500, 2021.

    9. Song, M., D. Wang, Z. A. Kudyshev, Y. Xuan, Z. Wang, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, "Enabling optical steganography, data storage, and encryption with plasmonic colors," Laser Photonics Rev., Vol. 15, 2000343, 2021.

    10. Creel, E. B., E. R. Corson, J. Eichhorn, R. Kostecki, J. J. Urban, and B. D. McCloskey, "Directing selectivity of electrochemical carbon dioxide reduction using plasmonics," ACS Energy Letters, Vol. 4, 1098-1105, 2019.

    11. Christopher, P., H. L. Xin, and S. Linic, "Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures," Nat. Chem., Vol. 3, 467-472, 2011.

    12. Raja, W., A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. Proietti Zaccaria, "Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells," Sci. Rep., Vol. 6, 1-11, 2016.

    13. Ma, R. M., R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, "Room-temperature sub-diffraction-limited plasmon laser by total internal reflection," Nat. Mater., Vol. 10, 110-113, 2011.

    14. Azzam, S. I., A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, and X. Zhang, "Ten years of spasers and plasmonic nanolasers," Light.: Sci. Appl., Vol. 9, 1-21, 2020.

    15. Gentile, F., M. L. Coluccio, R. P. Zaccaria, M. Francardi, G. Cojoc, G. Perozziello, R. Raimondo, P. Candeloro, and E. Di Fabrizio, "Selective on site separation and detection of molecules in diluted solutions with super-hydrophobic clusters of plasmonic nanoparticles," Nanoscale, Vol. 6, 8208-8225, 2014.

    16. Yang, A. K., M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. van Duyne, and T. W. Odom, "Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing," ACS Nano, Vol. 8, 7639-7647, 2014.

    17. Chen, J., Q. Zhang, C. Peng, C. Tang, X. Shen, L. Deng, and G. S. Park, "Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing," IEEE Photon. Technol. Lett., Vol. 30, 728-731, 2018.

    18. Wu, D., R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, "Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region," Nanoscale Research Letters, Vol. 12, 1-11, 2017.

    19. Chen, C., G.Wang, Z. Zhang, and K. Zhang, "Dual narrow-band absorber based on metal-insulator-metal configuration for refractive index sensing," Opt. Lett., Vol. 43, 3630-3633, 2018.

    20. Jiang, N., X. Zhuo, and J. Wang, "Active plasmonics: Principles, structures and applications," Chem. Rev., Vol. 118, 3054-3099, 2018.

    21. Proietti Zaccaria, R., A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, "Fully analytical description of adiabatic compression in dissipative polaritonic structures," Phys. Rev. B, Vol. 86, 035410, 2012.

    22. Duan, Q., Y. Liu, S. Chang, H. Chen, and J. Chen, "Surface plasmonic sensors: Sensing mechanism and recent applications," Sensors, Vol. 21, 5262, 2021.

    23. Špačková, B., P. Wrobel, M. Bocková, and J. Homola, "Optical biosensors based on plasmonic nanostructures: A review," Proceedings of the IEEE, Vol. 104, 2380-2408, 2016.

    24. Kasani, S., K. Curtin, and N. Wu, "A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications," Nanophotonics, Vol. 8, 2065-2089, 2019.

    25. Perahia, R., T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, "Surface-plasmon mode hybridization in subwavelength microdisk lasers," Appl. Phys. Lett., Vol. 95, 201114, 2009.

    26. Cheng, P. J., Z. T. Huang, J. H. Li, B. T. Chou, Y. H. Chou, W. C. Lo, K. P. Chen, T. C. Lu, and T. R. Lin, "High performance plasmonic nanolasers with a nanotrench defect cavity for sensing applications," ACS Photonics, Vol. 5, 2638-2644, 2018.

    27. Park, S. J., Y. D. Kim, H. W. Lee, H. J. Yang, J. Y. Cho, Y. K. Kim, and H. Lee, "Enhancement of light extraction efficiency of OLEDs using Si3N4-based optical scattering layer," Opt. Express, Vol. 22, 12392-12397, 2014.

    28. Amiria, I. S., R. Zakaria, and P. Yupapin, "Manipulating of nanometer spacing dual-wavelength by controlling the apodized grating depth in microring resonators," Results in Physics, Vol. 12, 32-37, 2019.

    29. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.

    30. Fawzy, S. M., A. M. Mahmoud, Y. I. Ismail, and N. K. Allam, "Novel silicon bipodal cylinders with controlled resonances and their use as beam steering metasurfaces," Sci. Rep., Vol. 11, 13635, 2021.

    31. Azzam, S. I., V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, "Formation of bound states in the continuum in hybrid plasmonic-photonic systems," Phys. Rev. Lett., Vol. 121, 253901, 2018.

    32. Christ, A., S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett., Vol. 91, 183901, 2003.

    33. Wang, H., H. Y. Wang, A. Bozzola, A. Toma, S. Panaro, W. Raja, A. Alabastri, L. Wang, Q. D. Chen, H. L. Xu, F. De Angelis, H. B. Sun, and R. P. Zaccaria, "Dynamics of strong coupling between J-aggregates and surface plasmon polaritons in subwavelength hole arrays," Adv. Funct. Mat., Vol. 26, 6198-6205, 2016.

    34. Wang, H., A. Toma, H. Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q. D. Chen, H. L. Xu, H. B. Sun, and R. P. Zaccaria, "The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays," Nanoscale, Vol. 8, 13445-13453, 2016.

    35. Abutoama, M. and I. Abdulhalim, "Angular and intensity modes self-referenced refractive index sensor based on thin dielectric grating combined with thin metal film," IEEE J. Sel. Topics Quantum Electron., Vol. 23, 4600309, 2017.

    36. Zhou, Y., X. Li, S. Li, Z. Guo, P. Zeng, J. He, D. Wang, R. Zhang, M. Lu, S. Zhang, and X. Wu, "Symmetric guided-mode resonance sensors in aqueous media with ultrahigh figure of merit," Opt. Express, Vol. 27, 34788-34802, 2019.

    37. Zhu, S. Y., H. L. Li, M. S. Yang, and S. W. Pang, "Highly sensitive detection of exosomes by 3D plasmonic photonic crystal biosensor," Nanoscale, Vol. 10, 19927-19936, 2018.

    38. Nair, S., C. Escobedo, and R. G. Sabat, "Crossed surface relief gratings as nanoplasmonic biosensors," ACS Sensors, Vol. 2, 379-385, 2017.

    39. Chen, J., Q. Zhang, C. Peng, C. Tang, X. Shen, L. Deng, and G.-S. Park, "Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing," IEEE Photon. Technol. Lett., Vol. 30, 728-731, 2018.

    40. Gong, Y. K., S. Wong, A. J. Bennett, D. L. Huffaker, and S. S. Oh, "Topological insulator laser using valley-hall photonic crystals," ACS Photonics, Vol. 7, 2089-2097, 2020.

    41. Liu, N., H. Wei, J. Li, Z. Wang, X. Tian, A. Pan, and H. Xu, "Plasmonic amplification with ultra-high optical gain at room temperature," Sci. Rep., Vol. 3, 1967, 2013.

    42. Visser, T. D., H. Blok, and B. Demeulenaere, "Confinement factors and gain in optical amplifiers," IEEE J. Sel. Topics Quantum Electron., Vol. 33, 1763-1766, 1997.

    43. Yang, A., T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, "Real-time tunable lasing from plasmonic nanocavity arrays," Nat. Commun, Vol. 6, 6936, 2015.

    44. Verma, R. and B. D. Gupta, "A novel approach for simultaneous sensing of urea and glucose by spr based optical fiber multianalyte sensor," Analyst., Vol. 139, 1449-1455, 2014.

    45. Ge, C., M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, "External cavity laser biosensor," Lab Chip, Vol. 13, 1247-1256, 2013.

    46. Xu, Y., P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. K. Ang, W. Knoll, and L.Wu, "Optical refractive index sensors with plasmonic and photonic structures: Promising and inconvenient truth," Adv. Opt. Mater., Vol. 7, 1801422, 2019.

    47. Elshorbagy, M. H., A. Cuadrado, G. González, F. J. González, and J. Alda, "Performance improvement of refractometric sensors through hybrid plasmonic-Fano resonances," J. Lightwave Technol., Vol. 37, 2905-2913, 2019.

    48. Zhang, M., M. Lu, C. Ge, and B. T. Cunningham, "Plasmonic external cavity laser refractometric sensor," Opt. Express, Vol. 22, 20347-20357, 2014.

    49. Shen, Y., J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, "Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit," Nat. Commun., Vol. 4, 2381, 2013.