1. Sadana, S., D. Ghosh, K. Joarder, A. N. Lakshmi, B. C. Sanders, and U. Sinha, "Near-100% two-photon-like coincidence-visibility dip with classical light and the role of complementarity," Phys. Rev. A, Vol. 100, 013839, 2019.
doi:10.1103/PhysRevA.100.013839
2. Wikipedia, , Newton’s rings, https://en.wikipedia.org/wiki/Newton's_rings.
3. Phase-locked loop, https://en.wikipedia.org/wiki/Phase-locked_loop.
4. Goodman, J. W., Statistical Optics, Wiley-Interscience, 1985.
5. Loudon, R., "The Quantum Theory of Light," OUP Oxford, 2000.
6. Mandel, L. and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, 1995.
doi:10.1017/CBO9781139644105
7. Gerry, C. and P. Knight, Introductory Quantum Optics, Cambridge University Press, 2004.
doi:10.1017/CBO9780511791239
8. Fox, M., Quantum Optics: An Introduction, Vol. 15, OUP Oxford, 2006.
9. Hanbury Brown, R. and R. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature, Vol. 177, No. 4497, 27-29, 1956.
doi:10.1038/177027a0
10. Hong, C. K., Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett., Vol. 59, 2044-2046, Nov. 1987.
11. Fearn, H. and R. Loudon, "Quantum theory of the lossless beam splitter," Optics Communications, Vol. 64, 485-490, 1987.
doi:10.1016/0030-4018(87)90275-6
12. Kaltenbaek, R., B. Blauensteiner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, "Experimental interference of independent photons," Phys. Rev. Lett., Vol. 96, 240502, Jun. 2006.
doi:10.1103/PhysRevLett.96.240502
13. Prasad, S., M. O. Scully, and W. Martienssen, "A quantum description of the beam splitter," Optics Communications, Vol. 62, No. 3, 139-145, 1987.
doi:10.1016/0030-4018(87)90015-0
14. Ou, Z. Y., "Quantum theory of fourth-order interference," Phys. Rev. A, Vol. 37, 1607-1619, 1988.
doi:10.1103/PhysRevA.37.1607
15. Ham, B. S., "The origin of anticorrelation for photon bunching on a beam splitter," Scientific Reports, Vol. 10, 7309, 2020.
doi:10.1038/s41598-020-64441-2
16. Branczyk, A. M., "Hong-Ou-Mandel interference,", arXiv:1711.00080, 2017.
17. Di Martino, G., Y. Sonnefraud, M. S. Tame, S. Kena-Cohen, F. Dieleman, K. Ozdemir, M. S. Kim, and S. A. Maier, "Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect," Phys. Rev. Applied, Vol. 1, 034004, 2014.
doi:10.1103/PhysRevApplied.1.034004
18. Longo, P., J. H. Cole, and K. Busch, "The Hong-Ou-Mandel effect in the context of few-photon scattering," Opt. Express, Vol. 20, 12 326-12 340, 2012.
doi:10.1364/OE.20.012326
19. Lang, C., C. Eichler, L. Steffen, J. M. Fink, M. J. Woolley, A. Blais, and A. Wallraff, "Correlations, indistinguishability and entanglement in Hong-Ou-Mandel experiments at microwave frequencies," Nature Physics, Vol. 9, 345-348, 2013.
doi:10.1038/nphys2612
20. Lopes, R., A. Imanaliev, A. Aspect, M. Cheneau, D. Boiron, and C. I. Westbrook, "Atomic Hong-Ou-Mandel experiment," Nature, Vol. 520, 66-68, 2015.
doi:10.1038/nature14331
21. Kobayashi, T., R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, "Frequency-domain Hong-Ou-Mandel interference," Nature Photonics, Vol. 10, 441-444, 2016.
doi:10.1038/nphoton.2016.74
22. Imany, P., O. D. Odele, M. S. Alshaykh, H.-H. Lu, D. E. Leaird, and A. M. Weiner, "Frequency-domain Hong-Ou-Mandel interference with linear optics," Opt. Lett., Vol. 43, No. 12, 2760-2763, 2018.
doi:10.1364/OL.43.002760
23. Rohde, P. P. and T. C. Ralph, "Frequency and temporal effects in linear optical quantum computing," Phys. Rev. A, Vol. 71, 032320, 2005.
doi:10.1103/PhysRevA.71.032320
24. Rohde, P. P., T. C. Ralph, and M. A. Nielsen, "Optimal photons for quantum-information processing," Phys. Rev. A, Vol. 72, 052332, 2005.
doi:10.1103/PhysRevA.72.052332
25. Mahrlein, S., S. Oppel, R. Wiegner, and J. von Zanthier, "Hong-Ou-Mandel interference without beam splitters," Journal of Modern Optics, Vol. 64, 921-929, 2017.
doi:10.1080/09500340.2016.1242790
26. Kim, M. S., W. Son, V. Buzek, and P. L. Knight, "Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement," Phys. Rev. A, Vol. 65, 032323, 2002.
doi:10.1103/PhysRevA.65.032323
27. Walschaers, M., "Signatures of many-particle interference," Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 53, 043001, 2020.
doi:10.1088/1361-6455/ab5c30
28. Deng, Y.-H., H. Wang, X. Ding, Z.-C. Duan, J. Qin, M.-C. Chen, Y. He, Y.-M. He, J.-P. Li, Y.- H. Li, L.-C. Peng, E. S. Matekole, T. Byrnes, C. Schneider, M. Kamp, D.-W. Wang, J. P. Dowling, S. Hofling, C.-Y. Lu, M. O. Scully, and J.-W. Pan, "Quantum interference between light sources separated by 150 million kilometers," Phys. Rev. Lett., Vol. 123, 080401, 2019.
doi:10.1103/PhysRevLett.123.080401
29. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand, 1990.
30. Electromagnetic field theory, Lecture Notes for ECE 604 at Purdue U, 2020, https://engineering.purdue.edu/wcchew/ece604s20/EMFTAll.pdf.
31. Na, D.-Y., J. Zhu, F. L. Teixeira, and W. C. Chew, "Quantum information propagation preserving computational electromagnetics,", arXiv preprint arXiv:1911.00947, 2019.
32. Na, D.-Y., J. Zhu, W. C. Chew, and F. L. Teixeira, "Quantum information preserving computational electromagnetics," Phys. Rev. A, Vol. 102, No. 1, 013711, Jul. 2020.
doi:10.1103/PhysRevA.102.013711
33. Chew, W. C., A. Y. Liu, C. Salazar-Lazaro, and W. E. I. Sha, "Quantum electromagnetics: A new look — Part I and Part II," J. Multiscale and Multiphys. Comput. Techn., Vol. 1, 73-97, 2016.
doi:10.1109/JMMCT.2016.2617018
34. Kirk, D. E., Optimal Control Theory: An Introduction, Courier Corporation, 2004.
35. Schrodinger, E., "An undulatory theory of the mechanics of atoms and molecules," Phys. Rev., Vol. 28, No. 6, 1049, 1926.
doi:10.1103/PhysRev.28.1049
36. Chew, W., A. Liu, C. Salazar-Lazaro, D.-Y. Na, and W. Sha, "Hamilton equations, commutator, and energy conservation," Quantum Reports, Vol. 1, 295-303, 2019.
doi:10.3390/quantum1020027
37. Louisell, W. H. and W. H. Louisell, Quantum Statistical Properties of Radiation, Vol. 7, Wiley, 1973.
38. Haken, H., Quantum Field Theory of Solids, an Introduction, North-Holland, 1976.
39. Cohen-Tannoudji, C., J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications, Wiley-VCH, 1988.
40. Vogel, W. and D.-G. Welsch, "Quantum Optics," John Wiley & Sons, 2006.
41. Walls, D. F. and G. J. Milburn, Quantum Optics, Springer Science & Business Media, 2007.
42. Scheel, S. and S. Y. Buhmann, "Macroscopic quantum electrodynamics," Acta Physica Slovaca, Vol. 58, 675-809, 2008.
43. Garrison, J. and R. Chiao, Quantum Optics, Oxford University Press, 2008.
doi:10.1093/acprof:oso/9780198508861.001.0001
44. Gottfried, K. and T.-M. Yan, Quantum Mechanics: Fundamentals, CRC Press, 2018.
doi:10.4324/9780429493225
45. Milonni, P., An Introduction to Quantum Optics and Quantum Fluctuations, Oxford University Press, 2019.
doi:10.1093/oso/9780199215614.001.0001
46. Miller, D. A., Quantum Mechanics for Scientists and Engineers, Cambridge University Press, 2008.
doi:10.1017/CBO9780511813962
47. Chew, W. C., "Quantum mechanics made simple: Lecture notes for ECE 487 at UIUC,", 2016, http://wcchew.ece.illinois.edu/chew/course/QMAll20161206.pdf.
48. Gerry, C. C. and K. M. Bruno, The Quantum Divide: Why Schrodinger's Cat is Either Dead or Alive, Oxford University Press, 2013.
doi:10.1093/acprof:oso/9780199666560.001.0001
49. Glauber, R. J., "The quantum theory of optical coherence," Phys. Rev., Vol. 130, 2529-2539, 1963.
doi:10.1103/PhysRev.130.2529