1. Sadana, S., D. Ghosh, K. Joarder, A. N. Lakshmi, B. C. Sanders, and U. Sinha, "Near-100% two-photon-like coincidence-visibility dip with classical light and the role of complementarity," Phys. Rev. A, Vol. 100, 013839, 2019.
doi:10.1103/PhysRevA.100.013839 Google Scholar
2. Wikipedia, , Newton’s rings, https://en.wikipedia.org/wiki/Newton's_rings.
3. Phase-locked loop, https://en.wikipedia.org/wiki/Phase-locked_loop.
4. Goodman, J. W., Statistical Optics, Wiley-Interscience, 1985.
5. Loudon, R., "The Quantum Theory of Light," OUP Oxford, 2000. Google Scholar
6. Mandel, L. and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, 1995.
doi:10.1017/CBO9781139644105
7. Gerry, C. and P. Knight, Introductory Quantum Optics, Cambridge University Press, 2004.
doi:10.1017/CBO9780511791239
8. Fox, M., Quantum Optics: An Introduction, Vol. 15, OUP Oxford, 2006.
9. Hanbury Brown, R. and R. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature, Vol. 177, No. 4497, 27-29, 1956.
doi:10.1038/177027a0 Google Scholar
10. Hong, C. K., Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett., Vol. 59, 2044-2046, Nov. 1987. Google Scholar
11. Fearn, H. and R. Loudon, "Quantum theory of the lossless beam splitter," Optics Communications, Vol. 64, 485-490, 1987.
doi:10.1016/0030-4018(87)90275-6 Google Scholar
12. Kaltenbaek, R., B. Blauensteiner, M. Zukowski, M. Aspelmeyer, and A. Zeilinger, "Experimental interference of independent photons," Phys. Rev. Lett., Vol. 96, 240502, Jun. 2006.
doi:10.1103/PhysRevLett.96.240502 Google Scholar
13. Prasad, S., M. O. Scully, and W. Martienssen, "A quantum description of the beam splitter," Optics Communications, Vol. 62, No. 3, 139-145, 1987.
doi:10.1016/0030-4018(87)90015-0 Google Scholar
14. Ou, Z. Y., "Quantum theory of fourth-order interference," Phys. Rev. A, Vol. 37, 1607-1619, 1988.
doi:10.1103/PhysRevA.37.1607 Google Scholar
15. Ham, B. S., "The origin of anticorrelation for photon bunching on a beam splitter," Scientific Reports, Vol. 10, 7309, 2020.
doi:10.1038/s41598-020-64441-2 Google Scholar
16. Branczyk, A. M., "Hong-Ou-Mandel interference,", arXiv:1711.00080, 2017. Google Scholar
17. Di Martino, G., Y. Sonnefraud, M. S. Tame, S. Kena-Cohen, F. Dieleman, K. Ozdemir, M. S. Kim, and S. A. Maier, "Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect," Phys. Rev. Applied, Vol. 1, 034004, 2014.
doi:10.1103/PhysRevApplied.1.034004 Google Scholar
18. Longo, P., J. H. Cole, and K. Busch, "The Hong-Ou-Mandel effect in the context of few-photon scattering," Opt. Express, Vol. 20, 12 326-12 340, 2012.
doi:10.1364/OE.20.012326 Google Scholar
19. Lang, C., C. Eichler, L. Steffen, J. M. Fink, M. J. Woolley, A. Blais, and A. Wallraff, "Correlations, indistinguishability and entanglement in Hong-Ou-Mandel experiments at microwave frequencies," Nature Physics, Vol. 9, 345-348, 2013.
doi:10.1038/nphys2612 Google Scholar
20. Lopes, R., A. Imanaliev, A. Aspect, M. Cheneau, D. Boiron, and C. I. Westbrook, "Atomic Hong-Ou-Mandel experiment," Nature, Vol. 520, 66-68, 2015.
doi:10.1038/nature14331 Google Scholar
21. Kobayashi, T., R. Ikuta, S. Yasui, S. Miki, T. Yamashita, H. Terai, T. Yamamoto, M. Koashi, and N. Imoto, "Frequency-domain Hong-Ou-Mandel interference," Nature Photonics, Vol. 10, 441-444, 2016.
doi:10.1038/nphoton.2016.74 Google Scholar
22. Imany, P., O. D. Odele, M. S. Alshaykh, H.-H. Lu, D. E. Leaird, and A. M. Weiner, "Frequency-domain Hong-Ou-Mandel interference with linear optics," Opt. Lett., Vol. 43, No. 12, 2760-2763, 2018.
doi:10.1364/OL.43.002760 Google Scholar
23. Rohde, P. P. and T. C. Ralph, "Frequency and temporal effects in linear optical quantum computing," Phys. Rev. A, Vol. 71, 032320, 2005.
doi:10.1103/PhysRevA.71.032320 Google Scholar
24. Rohde, P. P., T. C. Ralph, and M. A. Nielsen, "Optimal photons for quantum-information processing," Phys. Rev. A, Vol. 72, 052332, 2005.
doi:10.1103/PhysRevA.72.052332 Google Scholar
25. Mahrlein, S., S. Oppel, R. Wiegner, and J. von Zanthier, "Hong-Ou-Mandel interference without beam splitters," Journal of Modern Optics, Vol. 64, 921-929, 2017.
doi:10.1080/09500340.2016.1242790 Google Scholar
26. Kim, M. S., W. Son, V. Buzek, and P. L. Knight, "Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement," Phys. Rev. A, Vol. 65, 032323, 2002.
doi:10.1103/PhysRevA.65.032323 Google Scholar
27. Walschaers, M., "Signatures of many-particle interference," Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 53, 043001, 2020.
doi:10.1088/1361-6455/ab5c30 Google Scholar
28. Deng, Y.-H., H. Wang, X. Ding, Z.-C. Duan, J. Qin, M.-C. Chen, Y. He, Y.-M. He, J.-P. Li, Y.- H. Li, L.-C. Peng, E. S. Matekole, T. Byrnes, C. Schneider, M. Kamp, D.-W. Wang, J. P. Dowling, S. Hofling, C.-Y. Lu, M. O. Scully, and J.-W. Pan, "Quantum interference between light sources separated by 150 million kilometers," Phys. Rev. Lett., Vol. 123, 080401, 2019.
doi:10.1103/PhysRevLett.123.080401 Google Scholar
29. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand, 1990.
30. Electromagnetic field theory, Lecture Notes for ECE 604 at Purdue U, 2020, https://engineering.purdue.edu/wcchew/ece604s20/EMFTAll.pdf.
31. Na, D.-Y., J. Zhu, F. L. Teixeira, and W. C. Chew, "Quantum information propagation preserving computational electromagnetics,", arXiv preprint arXiv:1911.00947, 2019. Google Scholar
32. Na, D.-Y., J. Zhu, W. C. Chew, and F. L. Teixeira, "Quantum information preserving computational electromagnetics," Phys. Rev. A, Vol. 102, No. 1, 013711, Jul. 2020.
doi:10.1103/PhysRevA.102.013711 Google Scholar
33. Chew, W. C., A. Y. Liu, C. Salazar-Lazaro, and W. E. I. Sha, "Quantum electromagnetics: A new look — Part I and Part II," J. Multiscale and Multiphys. Comput. Techn., Vol. 1, 73-97, 2016.
doi:10.1109/JMMCT.2016.2617018 Google Scholar
34. Kirk, D. E., Optimal Control Theory: An Introduction, Courier Corporation, 2004.
35. Schrodinger, E., "An undulatory theory of the mechanics of atoms and molecules," Phys. Rev., Vol. 28, No. 6, 1049, 1926.
doi:10.1103/PhysRev.28.1049 Google Scholar
36. Chew, W., A. Liu, C. Salazar-Lazaro, D.-Y. Na, and W. Sha, "Hamilton equations, commutator, and energy conservation," Quantum Reports, Vol. 1, 295-303, 2019.
doi:10.3390/quantum1020027 Google Scholar
37. Louisell, W. H. and W. H. Louisell, Quantum Statistical Properties of Radiation, Vol. 7, Wiley, 1973.
38. Haken, H., Quantum Field Theory of Solids, an Introduction, North-Holland, 1976.
39. Cohen-Tannoudji, C., J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications, Wiley-VCH, 1988.
40. Vogel, W. and D.-G. Welsch, "Quantum Optics," John Wiley & Sons, 2006. Google Scholar
41. Walls, D. F. and G. J. Milburn, Quantum Optics, Springer Science & Business Media, 2007.
42. Scheel, S. and S. Y. Buhmann, "Macroscopic quantum electrodynamics," Acta Physica Slovaca, Vol. 58, 675-809, 2008. Google Scholar
43. Garrison, J. and R. Chiao, Quantum Optics, Oxford University Press, 2008.
doi:10.1093/acprof:oso/9780198508861.001.0001
44. Gottfried, K. and T.-M. Yan, Quantum Mechanics: Fundamentals, CRC Press, 2018.
doi:10.4324/9780429493225
45. Milonni, P., An Introduction to Quantum Optics and Quantum Fluctuations, Oxford University Press, 2019.
doi:10.1093/oso/9780199215614.001.0001
46. Miller, D. A., Quantum Mechanics for Scientists and Engineers, Cambridge University Press, 2008.
doi:10.1017/CBO9780511813962
47. Chew, W. C., "Quantum mechanics made simple: Lecture notes for ECE 487 at UIUC,", 2016, http://wcchew.ece.illinois.edu/chew/course/QMAll20161206.pdf. Google Scholar
48. Gerry, C. C. and K. M. Bruno, The Quantum Divide: Why Schrodinger's Cat is Either Dead or Alive, Oxford University Press, 2013.
doi:10.1093/acprof:oso/9780199666560.001.0001
49. Glauber, R. J., "The quantum theory of optical coherence," Phys. Rev., Vol. 130, 2529-2539, 1963.
doi:10.1103/PhysRev.130.2529 Google Scholar