Vol. 166

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-01-16

High-Sensitivity and Temperature-Insensitive Refractometer Based on TNHF Structure for Low-Range Refractive Index Measurement

By Fang Wang, Kaibo Pang, Tao Ma, Xu Wang, and Yufang Liu
Progress In Electromagnetics Research, Vol. 166, 167-175, 2019
doi:10.2528/PIER19102301

Abstract

Refractive index (RI) measurements find extensive use in biochemical sensing field. However, currently available RI sensors exhibit excessive temperature crosstalk and have low sensitivity in the low RI range. To solve this, a high-sensitivity and temperature-insensitive refractometer based on a tapered no-core-hollow-core fiber (TNHF) structure is proposed for low-range RI measurement. The TNHF comprises two Mach-Zehnder interferometers that are introduced within the tapered no-core fiber and hollow-core fiber, thereby establishing a composite interference. The results of an experimental evaluation demonstrate that maximum sensitivities of 482.74 nm/RIU within an RI range of 1.335~1.3462 can be achieved, which is greater than that achieved using a traditional modal interferometer structure. Significantly, the refractometer exhibits ultra-low temperature sensitivities of 0.062 dB/°C and 6.5 pm/°C, which can alleviate the temperature crosstalk. The refractometer can be realistically applied in many fields requiring high precision RI measurement due to its advantages of low cost, ease of manufacture, high sensitivity, and temperature insensitivity.

Citation


Fang Wang, Kaibo Pang, Tao Ma, Xu Wang, and Yufang Liu, "High-Sensitivity and Temperature-Insensitive Refractometer Based on TNHF Structure for Low-Range Refractive Index Measurement," Progress In Electromagnetics Research, Vol. 166, 167-175, 2019.
doi:10.2528/PIER19102301
http://jpier.org/PIER/pier.php?paper=19102301

References


    1. Caucheteur, C., T. Guo, and J. Albert, "Review of plasmonic fiber optic biochemical sensors: Improving the limit of detection," Anal. Bioanal. Chem., Vol. 407, No. 14, 3883-3897, 2015.
    doi:10.1007/s00216-014-8411-6

    2. James, S. W., S. Korposh, S. Lee, and R. P. Tatam, "A long period grating-based chemical sensor insensitive to the influence of interfering parameters," Opt. Express, Vol. 22, No. 7, 8012-8023, 2014.
    doi:10.1364/OE.22.008012

    3. Tian, Z., S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, "Refractive index sensing with Mach-Zehnder interferometer based on concatenating two singlemode fiber tapers," IEEE Photonics Technol. Lett., Vol. 20, No. 8, 626-628, 2008.
    doi:10.1109/LPT.2008.919507

    4. Wang, J., Y. Jin, Y. Zhao, and X. Dong, "Refractive index sensor based on all-fiber multimode interference," Optik, Vol. 124, No. 14, 1845-1848, 2013.
    doi:10.1016/j.ijleo.2012.05.042

    5. Wang, Q., B. T. Wang, L. X. Kong, and Y. Zhao, "Comparative analyses of bi-tapered fiber Mach- Zehnder interferometer for refractive index sensing," IEEE Trans. Instrum. Meas., Vol. 66, No. 9, 2483-2489, 2017.
    doi:10.1109/TIM.2017.2707962

    6. Wang, P., G. Brambilla, M. Ding, Y. Semenova, Q.Wu, and G. Farrell, "High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference," Opt. Lett., Vol. 36, No. 12, 2233-2235, 2011.
    doi:10.1364/OL.36.002233

    7. Sun, L., J. Qin, Z. Tong, W. Zhang, and M. Gong, "Simultaneous measurement of refractive index and temperature based on down-taper and thin-core fiber," Opt. Commun., Vol. 426, 506-510, 2018.
    doi:10.1016/j.optcom.2018.06.004

    8. Wo, J., G. Wang, Y. Cui, Q. Sun, R. Liang, P. Shum, and D. Liu, "Refractive index sensor using microfiber-based Mach-Zehnder interferometer," Opt. Lett., Vol. 37, No. 1, 67-69, 2012.
    doi:10.1364/OL.37.000067

    9. Wang, H., H. Meng, R. Xiong, Q. Wang, B. Huang, X. Zhang, W. Yu, C. Tan, and X. Huang, "Simultaneous measurement of refractive index and temperature based on asymmetric structures modal interference," Opt. Commun., Vol. 364, 191-194, 2016.
    doi:10.1016/j.optcom.2015.11.015

    10. Lee, B., Y. Kim, K. Park, J. Eom, M. Kim, B. Rho, and H. Choi, "Interferometric fiber optic sensors," Sensors, Vol. 12, No. 3, 2467-2486, 2012.
    doi:10.3390/s120302467

    11. Ahmed, F., V. Ahsani, L. Melo, P. Wild, and M. B. G. Jun, "Miniaturized tapered photonic crystal fiber Mach-Zehnder interferometer for enhanced refractive index sensing," IEEE Sens. J., Vol. 16, 8761-8766, 2016.
    doi:10.1109/JSEN.2016.2566663

    12. Shi, F., J. Wang, Y. Zhang, Y. Xia, and L. Zhao, "Refractive index sensor based on S-tapered photonic crystal fiber," IEEE Photonics Technol. Lett., Vol. 25, No. 4, 344-347, 2013.
    doi:10.1109/LPT.2013.2238623

    13. Lu, H., X. Wang, S. Zhang, F. Wang, and Y. Liu, "A fiber-optic sensor based on no-core fiber and Faraday rotator mirror structure," Opt. Laser Technol., Vol. 101, 507-514, 2018.
    doi:10.1016/j.optlastec.2017.11.014

    14. Cao, Y., H. Liu, Z. Tong, S. Yuan, and J. Su, "Simultaneous measurement of temperature and refractive index based on a Mach-Zehnder interferometer cascaded with a fiber Bragg grating," Opt. Commun., Vol. 342, 180-183, 2015.
    doi:10.1016/j.optcom.2014.12.067

    15. Yang, R., Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H. B. Sun, "Single S-tapered fiber Mach- Zehnder interferometers," Opt. Lett., Vol. 36, No. 23, 4482-4484, 2011.
    doi:10.1364/OL.36.004482

    16. Chen, C., R. Yang, X. Y. Zhang, W. H. Wei, Q. Guo, X. Zhang, L. Qin, Y. Q. Ning, and Y. S. Yu, "Compact refractive index sensor based on an S-tapered fiber probe," Opt. Mater. Express, Vol. 8, No. 4, 919-925, 2018.
    doi:10.1364/OME.8.000919

    17. Lu, C., J. Su, X. Dong, T. Sun, and K. T. V. Grattan, "Simultaneous measurement of strain and temperature with a few-mode fiber-based sensor," J. Lightwave Technol., Vol. 36, No. 13, 2796-2802, 2018.
    doi:10.1109/JLT.2018.2825294

    18. Tian, J., Z. Lu, M. Quan, Y. Jiao, and Y. Yao, "Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber," Opt. Express, Vol. 24, No. 18, 20132-20142, 2016.
    doi:10.1364/OE.24.020132

    19. Gao, S., W. Zhang, Z.-Y. Bai, H. Zhang, W. Lin, L. Wang, and J. Li, "Microfiber-enabled inline Fabry-P´erot interferometer for high-sensitive force and refractive index sensing," J. Lightwave Technol., Vol. 32, No. 9, 1682-1688, 2014.
    doi:10.1109/JLT.2014.2310205

    20. Coelho, L., D. Viegas, J. L. Santos, and J. M. M. M. Almeida, "Characterization of zinc oxide coated optical fiber long period gratings with improved refractive index sensing properties," Sensor. Actuat. Biol. Chem., Vol. 223, 45-51, 2016.
    doi:10.1016/j.snb.2015.09.061

    21. Shen, F., C. Wang, Z. Sun, K. Zhou, L. Zhang, and X. Shu, "Small-period long-period fiber grating with improved refractive index sensitivity and dual-parameter sensing ability," Opt. Lett., Vol. 42, No. 2, 199-202, 2017.
    doi:10.1364/OL.42.000199

    22. Lu, H., S. Dai, Z. Yue, Y. Fan, H. Cheng, J. Di, D. Mao, E. Li, T. Mei, and J. Zhao, "Sb2 Te3 topological insulator: Surface plasmon resonance and application in refractive index monitoring," Nanoscale, Vol. 11, No. 11, 4759-4766, 2019.
    doi:10.1039/C8NR09227C

    23. Lu, J., D. Spasic, F. Delport, T. van Stappen, I. Detrez, D. Daems, S. Vermeire, A. Gils, and J. Lammertyn, "Immunoassay for detection of infliximab in whole blood using a fiber-optic surface plasmon resonance biosensor," Anal. Chem., Vol. 89, No. 6, 3664-3671, 2017.
    doi:10.1021/acs.analchem.6b05092

    24. Lang, C., Y. Liu, K. Cao, and S. Qu, "Temperature-insensitive optical fiber strain sensor with ultralow detection limit based oncapillary-taper temperature compensation structure," Opt. Express, Vol. 26, No. 1, 477, 2018.
    doi:10.1364/OE.26.000477

    25. Wang, Q., G. Farrell, and W. Yan, "Investigation on single-mode-multimode single-mode fiber structure," J. Lightwave Technol., Vol. 26, No. 5, 512-519, 2008.
    doi:10.1109/JLT.2007.915205

    26. Geng, Y., X. Li, X. Tan, Y. Deng, and Y. Yu, "High-sensitivity Mach-Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper," IEEE Sens. J., Vol. 11, No. 11, 2891-2894, 2011.
    doi:10.1109/JSEN.2011.2146769

    27. Yan, W., Q. Han, Y. Chen, H. Song, X. Tang, and T. Liu, "Fiber-loop ring-down interrogated refractive index sensor based on an SNS fiber structure," Sensor. Actuat. Biol. Chem., Vol. 255, 2018-2022, 2018.
    doi:10.1016/j.snb.2017.09.002

    28. Wu, Q., Y. Semenova, P. Wang, and G. Farrell, "High sensitivity SMS fiber structure based refractometer — Analysis and experiment," Opt. Express, Vol. 19, No. 9, 7937-7944, 2011.
    doi:10.1364/OE.19.007937