Vol. 161
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-05-02
A Wide-Angle and Wide-Band Circular Polarizer Using a BI-Layer Metasurface
By
Progress In Electromagnetics Research, Vol. 161, 125-133, 2018
Abstract
In this work, a wide-angle and wide-band transmission-type circular polarizer based on a bi-layer anisotropic metasurface is proposed, in which the unit cell consists of two layers of identical patterned metal films deposited on the two sides of a homogeneous dielectric layer, and the geometric pattern of the metal film is a square aperture surrounding a concentric square-corner-truncated square patch. The simulated results show that the polarizer can realize a linear-to-circular polarization conversion at both x- and y-polarized incidences in the frequency range from 7.63 to 11.13 GHz with a relative bandwidth of 37.3%, and it can maintain a stable polarization conversion performance under large-range incidence angles. Moreover, it has no asymmetric transmission effect, and the transmission coefficients at x- and y-polarized incidences are completely equal. Finally, one experiment is carried out, and the simulated and measured results are almost in agreement with each other.
Citation
Baoqin Lin, Jianxin Guo, Yanwen Wang, Zuliang Wang, Baigang Huang, and Xiangwen Liu, "A Wide-Angle and Wide-Band Circular Polarizer Using a BI-Layer Metasurface," Progress In Electromagnetics Research, Vol. 161, 125-133, 2018.
doi:10.2528/PIER18010922
References

1. Kajiwara, A., "Line-of-sight indoor radio communication using circularly polarized waves," IEEE Trans. Veh. Technol., Vol. 44, No. 3, 487-493, 1995.
doi:10.1109/25.406616

2. Young, L., L. Robinson, and C. Hacking, "Meander-line polarizer," IEEE Trans. Antennas and Propa., Vol. 21, No. 3, 376-378, 1973.
doi:10.1109/TAP.1973.1140503

3. Huang, Y. H., Y. Zhou, and S. T. Wu, "Broadband circular polarizer using stacked chiral polymer films," Optics Express, Vol. 15, No. 10, 6414-6419, 2007.
doi:10.1364/OE.15.006414

4. Chen, H., J. Wang, and H. Ma, "Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances," Journal of Applied Physics, Vol. 115, No. 15, 154504, 2014.
doi:10.1063/1.4869917

5. Gao, X., X. Han, and W. P. Cao, "Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface," IEEE Transactions on Antennas & Propagation, Vol. 63, No. 8, 3522-3530, 2015.
doi:10.1109/TAP.2015.2434392

6. Sui, S., H. Ma, J. Wang, et al. "Symmetry-based coding method and synthesis topology optimization design of ultra-wideband polarization conversion metasurfaces," Applied Physics Letters, Vol. 109, No. 1, 063908, 2016.
doi:10.1063/1.4955412

7. Khan, M. I., Q. Fraz, and F. A. Tahir, "Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle," Journal of Applied Physics, Vol. 121, No. 4, 045103, 2017.
doi:10.1063/1.4974849

8. Su, P., Y. Zhao, S. Jia, et al. "An ultra-wideband and polarization-independent metasurface for RCS reduction," Scientific Reports, Vol. 6, 20387, 2016.

9. Zhao, J. and Y. Cheng, "A high-efficiency and broad band reflective 90 linear polarization rotator based on anisotropic metamaterial," Applied Physics B, Vol. 122, No. 10, 255, 2016.
doi:10.1007/s00340-016-6533-6

10. Cheng, Y. Z., C. Fang, X. S. Mao, R. Z. Gong, and L. Wu, "Design of an ultra-broad band and high-efficient reflective linear polarization convertor at optical frequency," IEEE Photonics Journal, Vol. 8, 7805509, 2016.

11. Sun, H., C. Gu, X. Chen, et al. "Ultra-wideband and broad-angle linear polarization conversion metasurface," Journal of Applied Physics, Vol. 121, No. 17, 1304-1404, 2017.
doi:10.1063/1.4982916

12. Zhao, J. C. and Y. Z. Cheng, "Ultra-broad band and high-efficiency reflective linear polarization convertor based on planar anisotropic metamaterial in microwave region," Optik — International Journal for Light and Electron Optics, Vol. 136, 52-57, 2017.
doi:10.1016/j.ijleo.2017.02.006

13. Fang, C., Y. Cheng, Z. He, J. Zhao, and R. Gong, "Design of a wideband reflective linear polarization converter based on the ladder-shaped structure metasurface,", Vol. 137, 148-155, 2017.
doi:10.1016/j.ijleo.2017.03.002

14. Xu, P., S. Y. Wang, and G. Wen, "A linear polarization converter with near unity efficiency in microwave regime," Journal of Applied Physics, Vol. 121, No. 14, 1804-1949, 2017.
doi:10.1063/1.4979880

15. Xu, K. K., Z. Y. Xiao, and J. Y. Tang, "Ultra-broad band and dual-band highly efficient polarization conversion based on the three-layered chiral structure," Physica E, Vol. 81, 169-176, 2016.
doi:10.1016/j.physe.2016.03.015

16. Zhou, G., X. Tao, Z. Shen, et al. "Designing perfect linear polarization converters using perfect electric and magnetic conducting surfaces," Scientific Reports, Vol. 6, 38925, 2016.
doi:10.1038/srep38925

17. Huang, C., Y. Feng, J. Zhao, et al. "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Physical Review B, Vol. 85, No. 19, 195131, 2012.
doi:10.1103/PhysRevB.85.195131

18. Huang, X., D. Yang, S. Yu, et al. "Dual-band asymmetric transmission of linearly polarized wave using Π-shaped metamaterial," Applied Physics B, Vol. 117, No. 2, 633-638, 2014.
doi:10.1007/s00340-014-5876-0

19. Xu, Y., Q. Shi, Z. Zhu, et al. "Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial," Optics Express, Vol. 22, No. 21, 25679, 2014.
doi:10.1364/OE.22.025679

20. Liu, D., Z. Xiao, X. Ma, et al. "Dual-band asymmetric transmission of chiral metamaterial based on complementary U-shaped structure," Applied Physics A, Vol. 118, No. 3, 787-791, 2015.
doi:10.1007/s00339-015-9005-7

21. Fang, S., K. Luan, H. F. Ma, et al. "Asymmetric transmission of linearly polarized waves in terahertz chiral metamaterials," Journal of Applied Physics, Vol. 121, No. 3, 033103, 2017.
doi:10.1063/1.4974477

22. Cheng, Y., R. Gong, and L. Wu, "Ultra-broad band linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves," Plasmonics, Vol. 12, No. 4, 1113-1120, 2017.
doi:10.1007/s11468-016-0365-4

23. Dou, T., L. Wei, X. Ran, et al. "Broadband asymmetric transmission of linearly polarised wave based on bilayered chiral metamaterial," IET Microwaves Antennas & Propagation, Vol. 11, No. 2, 171-176, 2017.
doi:10.1049/iet-map.2016.0342

24. Kuwata-Gonokami, M., N. Saito, Y. Ino, et al. "Giant optical activity in quasi-two-dimensional planar nanostructures," Phys. Rev. Lett., Vol. 95, No. 22, 227401, 2005.
doi:10.1103/PhysRevLett.95.227401

25. Yan, S. and G. A. E. Vandenbosch, "Compact circular polarizer based on chiral twisted double split-ring resonator," Appl. Phys. Lett., Vol. 102, No. 10, 103503-103504, 2013.
doi:10.1063/1.4794940

26. Martinez-Lopez, L., J. Rodriguez-Cuevas, J. I. Martinez-Lopez, and A. E. Martynyuk, "A multilayer circular polarizer based on bisected split-ring frequency selective surfaces," IEEE Antennas & Wireless Propagation Letters, Vol. 13, No. 2, 153-156, 2014.
doi:10.1109/LAWP.2014.2298393

27. Pfeiffer, C., C. Zhang, V. Ray, et al. "High performance bianisotropic metasurfaces: Asymmetric transmission of light," Physical Review Letters, Vol. 113, No. 2, 023902, 2014.
doi:10.1103/PhysRevLett.113.023902

28. Cheng, Y., C. Wu, Z. Z. Cheng, and R. Z. Gong, "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.
doi:10.2528/PIER16012501

29. Liu, Y., Y. Luo, et al. "Linear polarization to left/right-handed circular polarization conversion using ultrathin planar chiral metamaterials," Applied Physics A, Vol. 123, No. 9, 571, 2017.
doi:10.1007/s00339-017-1167-z

30. Baena, J. D., et al., "Broadband and thin linear-to-circular polarizers based on self-complementary zigzag metasurfaces," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4124-4133, 2017.
doi:10.1109/TAP.2017.2717964

31. Gansel, J. K., M. Thiel, M. S. Rill, et al. "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513, 2009.
doi:10.1126/science.1177031

32. Gansel, J. K., M. Latzel, et al. "Tapered gold-helix metamaterials as improved circular polarizers," Appl. Phys. Lett., Vol. 100, No. 10, 101109-101109-3, 2012.
doi:10.1063/1.3693181

33. Kaschke, J., L. Blume, et al. "Metamaterial for broadband circular polarization conversion," Advanced Optical Materials, Vol. 3, No. 11, 1411-1417, 2015.
doi:10.1002/adom.201500194

34. Chen, M., L. J. Jiang, W. Sha, et al. "Polarization control by using anisotropic 3-D chiral structures," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4687-4694, 2016.
doi:10.1109/TAP.2016.2600758

35. Ji, R., S. W. Wang, X. Liu, X. Chen, and W. Lu, "Broadband circular polarizers constructed using helix-like chiral metamaterials," Nanoscale, Vol. 8, No. 31, 14725-14729, 2016.
doi:10.1039/C6NR01738J