Vol. 157

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-11-04

Optimal Illumination Schemes for Near-Field Microwave Imaging

By Denys S. Shumakov, Alexander S. Beaverstone, and Natalia K. Nikolova
Progress In Electromagnetics Research, Vol. 157, 93-110, 2016
doi:10.2528/PIER16070808

Abstract

Axial-null illumination (ANI) is proposed to simplify the calibration of microwave imaging systems. The illumination also enhances the spatial resolution. ANI can be achieved with various array configurations, but a minimum of two transmitting antennas are required, which is a well-known form of differential illumination. Here, ANI is achieved with four transmitting antennas, and its implementation is investigated in a planar scanning scenario. The receiving antenna resides at the radiation null of the ANI array. Back-scattered reception requires an antenna at the center of the ANI array whereas forward-scattered reception requires an antenna aligned with the ANI axis, but on the opposite side of the imaged volume. The most important advantage of the proposed imaging setup is that it eliminates the need for background (or baseline) measurements, thus simplifying the system calibration. Also, it is proven that at least two-fold improvement in the spatial resolution can be achieved in near-field imaging scenarios compared to the conventional single-source illumination.

Citation


Denys S. Shumakov, Alexander S. Beaverstone, and Natalia K. Nikolova, "Optimal Illumination Schemes for Near-Field Microwave Imaging," Progress In Electromagnetics Research, Vol. 157, 93-110, 2016.
doi:10.2528/PIER16070808
http://jpier.org/PIER/pier.php?paper=16070808

References


    1. Nanzer, J., Microwave and Millimeter-wave Remote Sensing for Security Applications, Artech House, Norwood, MA, 2012.

    2. Amin, M. G., Through-the-Wall Radar Imaging, CRC Press, Boca Raton, FL, 2011.

    3. Zoughi, R., Microwave Non-destructive Testing and Evaluation, Kluwer Academic, Dordrecht, The Netherlands, 2000.
    doi:10.1007/978-94-015-1303-6

    4. Vorst, A. V., A. Rosen, and Y. Kotsuka, RF/Microwave Interaction with Biological Tissues, Wiley, Hoboken, NJ, 2006.

    5. Nikolova, N. K., "Microwave biomedical imaging," Wiley Encyclopedia of Electrical and Electronics Engineering, 1-22, published on-line Apr. 25, 2014.

    6. Pastorino, M., Microwave Imaging, John Wiley & Sons, Hoboken, NJ, 2010.
    doi:10.1002/9780470602492.ch1

    7. Caorsi, S., G. L. Gragnani, and M. Pastorino, "An electromagnetic approach using a multi-illumination technique," IEEE Trans. Biomed. Eng., Vol. 41, No. 4, 406-409, Apr. 1994.
    doi:10.1109/10.284973

    8. Tseng, C.-H. and T.-H. Chu, "Improvement of quasi-monostatic frequency-swept microwave imaging of conducting objects using illumination diversity technique," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 305-312, Jan. 2005.
    doi:10.1109/TAP.2004.838787

    9. Helaoui, L., J. Bel Hadj Tahar, and F. Choubani, "Multi-source illumination approach for buried objects exploration," 2008 2nd Int. Conf. Dig. Soc., 146-149, Sainte Luce, Feb. 2008.

    10. Zhao, Y., W. Shao, and G. Wang, "UWB microwave imaging for early breast cancer detection: Effect of two synthetic antenna array configurations," 2004 IEEE Int. Conf. Syst., Man and Cybern., Vol. 5, 4468-4473, Oct. 2004.

    11. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. on Microwave Theory and Tecnniques, Vol. 48, No. 11, 1841-1853, Nov. 2000.

    12. Zakaria, A., C. Gilmore, and J. LoVetri, "Finite-element contrast source inversion method for microwave imaging," Inverse Problems, Vol. 26, 115010, 2010.
    doi:10.1088/0266-5611/26/11/115010

    13. Mojabi, P., M. Ostadrahimi, L. Shafai, and J. LoVetri, "Microwave tomography techniques and algorithms: A review," Antenna Technology and Applied Electromagnetics (ANTEM), 1-4, Toulouse, France, Jun. 2012.

    14. Semenov, S. Y., R. H. Svenson, A. E. Bulyshev, A. E. Souvorov, A. G. Nazarov, Y. E. Sizov, V. G. Posukh, A. V. Pavlovsky, P. N. Repin, and G. P., "Spatial resolution of microwave tomography for detection of myocardial ischemia and infarction --- Experimental study on two-dimensional models," IEEE Trans. on Microwave Theory and Tecnniques, Vol. 48, No. 4, 538-544, Apr. 2000.
    doi:10.1109/22.842025

    15. Gilmore, C., P. Mojabi, A. Zakaria, S. Pistorius, and J. LoVetri, "On super-resolution with an experimental microwave tomography system," IEEE Antennas and Wireless Propag. Lett., Vol. 9, 393-396, 2010.
    doi:10.1109/LAWP.2010.2049471

    16. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array --- Experimental results," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1692-1704, Jun. 2009.
    doi:10.1109/TAP.2009.2019856

    17. Donelli, M., I. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research, Vol. 18, 179-195, 2011.
    doi:10.2528/PIERM11040903

    18. Klemm, M., J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based breast cancer detection: Imaging in inhomogeneous breast phantoms," IEEE Antennas and Wireless Propag. Lett., Vol. 8, 1349-1352, 2009.
    doi:10.1109/LAWP.2009.2036748

    19. Rocca, P., M. Donelli, G. L. Gragnani, and A. Massa, "Iterative multi-resolution retrieval of non-measurable equivalent currents for the imaging of dielectric objects," Inverse Problems, Vol. 25, No. 055004, 1-15, 2009.

    20. Viani, F., M. Donelli, P. Rocca, R. Azaro, and A. Massa, "A multi-resolution three-dimensional approach based on SVM for breast cancer detection," 24th International Review of Progress in Applied Computational Electromagnetics, 479-482, ACES, Niagara Falls, Canada, 2008.

    21. Donelli, M., D. Franceschini, A. Massa, M. Pastorino, and A. Zanetti, "Multi-resolution iterative inversion of real inhomogeneous targets," Inverse Problem, Vol. 21, No. 6, S51-S63, 2005.
    doi:10.1088/0266-5611/21/6/S05

    22. Tu, S., J. J. McCombe, D. S. Shumakov, and N. K. Nikolova, "Fast quantitative microwave imaging with resolvent kernel extracted from measurements," Inverse Problems, Vol. 31, No. 045007, 1-33, 2015.

    23. Ravan, M., R. K. Amineh, and N. K. Nikolova, "Two-dimensional near-field microwave holography," Inverse Problems, Vol. 26, No. 5, 055011, May 2010.
    doi:10.1088/0266-5611/26/5/055011

    24. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. on Microwave Theory and Techniques, Vol. 49, No. 9, 1581-1592, Sep. 2001.
    doi:10.1109/22.942570

    25. Fritze, M., B. M. Tyrell, D. K. Astolfi, R. D. Lambert, D. W. Yost, A. R. Forte, S. G. Cann, and B. D. Wheeler, "Subwavelength optical lithography with phase-shift photomasks," Lincoln Laboratory Journal, Vol. 14, No. 2, 237-250, 2003.

    26. Wong, A. K.-K., Resolution Enhancement Techniques in Optical Lithography, SPIE, Bellingham, WA, 2001.
    doi:10.1117/3.401208

    27. Deng, C., Y. Li, Z. Zhang, and Z. Feng, "A hemispherical 3-D null steering antenna for circular polarization," IEEE Antennas and Wireless Propag. Lett., Vol. 14, 803-806, 2015.
    doi:10.1109/LAWP.2014.2382107

    28. Sun, C., A. Hirata, T. Ohira, and N. C. Karmakar, "Fast beamforming of electronically steerable parasitic array radiator antennas: Theory and experiment," IEEE Trans. Antennas Propag., Vol. 52, No. 7, 1819-1832, Jul. 2004.
    doi:10.1109/TAP.2004.831314

    29. FEKO Suite 6.3 EM Software & Systems, Inc., USA www.feko.info, .

    30. Shumakov, D. S., A. S. Beaverstone, D. Tajik, and N. K. Nikolova, "Experimental investigation of axial-null and axial-peak illumination schemes in microwave imaging," IEEE AP-S/URSI Int. Symp. on Antennas and Propag., Fajardo, Puerto Rico, Jun. 2016.

    31. Wilson, R., "Propagation losses through common building materials: 2.4 GHz vs. 5 GHz,", E10589 Magis Networks, Inc., 1-27, Aug. 2002.

    32. Jenks, C. H. J., "Dielectric pyramid antenna for GPR applications," 10th European Conf. on Antennas and Propag. (EuCAP), 1-3, Apr. 2016.
    doi:10.1109/EuCAP.2016.7481679