Vol. 141

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-07-26

Evolution of Cos-Gaussian Beams in a Strongly Nonlocal Nonlinear Medium

By Ying Guan, Li-Xin Zhong, Khian-Hooi Chew, Hao Chen, Qiyang Wu, and Rui Pin Chen
Progress In Electromagnetics Research, Vol. 141, 403-414, 2013
doi:10.2528/PIER13060703

Abstract

The dynamical properties of cos-Gaussian beams in strongly nonlocal nonlinear (SNN) media are theoretically investigated. Based on the moments method, the analytical expression for the root-mean-square (RMS) of the cos-Gaussian beam propagating in a SNN medium is derived. The critical powers that keep the RMS beam widths invariant during propagation in a SNN medium are discussed. The RMS beam width tends to evolve periodically when the initial power does not equal to the critical power. The analytical solution of the cos-Gaussian beams in SNN media is obtained by the technique of variable transformation. Despite the difference in beam profile symmetries and initial powers, a cos-Gaussian beam always transforms periodically into a cosh-Gaussian beam during propagation, and the transformation between the two beams revives after a propagation distance.

Citation


Ying Guan, Li-Xin Zhong, Khian-Hooi Chew, Hao Chen, Qiyang Wu, and Rui Pin Chen, "Evolution of Cos-Gaussian Beams in a Strongly Nonlocal Nonlinear Medium," Progress In Electromagnetics Research, Vol. 141, 403-414, 2013.
doi:10.2528/PIER13060703
http://jpier.org/PIER/pier.php?paper=13060703

References


    1. Bang, O., W. Krolikowski, J. Wyller, and J. J. Rasmussen, "Collapse arrest and soliton stabilization in nonlocal nonlinear media," Phys. Rev. E, Vol. 66, 046619, 2002.
    doi:10.1103/PhysRevE.66.046619

    2. Yakimenko, A. I., V. M. Lashkin, and O. O. Prikhodko, "Dynamics of two-dimensional coherent structures in nonlocal nonlinear media," Phys. Rev. E, Vol. 73, 066605, 2006.
    doi:10.1103/PhysRevE.73.066605

    3. Buccoliero, D., A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, "Spiraling multivortex solitons in nonlocal nonlinear media," Opt. Lett., Vol. 33, No. 2, 198-200, 2008.
    doi:10.1364/OL.33.000198

    4. Snyder, A. W. and D. J. Mitchell, "Accessible solitons," Science, Vol. 276, No. 5318, 1538-1541, 1997.
    doi:10.1126/science.276.5318.1538

    5. Buccoliero, D., A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, "Laguerre and hermite soliton clusters in nonlocal nonlinear media," Phys. Rev. Lett., Vol. 98, No. 5, 053901, 2007.
    doi:10.1103/PhysRevLett.98.053901

    6. Lopez-Aguayo, S., A. S. Desyatnikov, and Y. S. Kivshar, "Azimuthons in nonlocal nonlinear media," Opt. Express, Vol. 14, No. 17, 7903, 2006.
    doi:10.1364/OE.14.007903

    7. Krolikowski, W. and O. Bang, "Solitons in nonlocal nonlinear media: Exact solutions," Phys. Rev. E, Vol. 63, No. 1, 016610, 2000.
    doi:10.1103/PhysRevE.63.016610

    8. Lopez-Aguayo, S. and J. C. Gutierrez-Vega, "Elliptically modulated self-trapped singular beams in nonlocal nonlinear media: ellipticons," Opt. Express, Vol. 15, No. 26, 18326-18338, 2007.
    doi:10.1364/OE.15.018326

    9. Biswas, A., "Temporal-soliton solution of the complex Ginzburg-Landau equation with power law nonlinearity," Progress In Electromagnetics Research, Vol. 96, 1-7, 2009.
    doi:10.2528/PIER09073108

    10. Mitatha, S., "Dark soliton behaviors within the nonlinear micro and nanoring resonators and applications," Progress In Electromagnetics Research, Vol. 99, 383-404, 2009.
    doi:10.2528/PIER09083006

    11. Chen, R. P. and C. H. R. Ooi, "Evolution and collapse of a Lorentz beam in Kerr medium," Progress In Electromagnetics Research, Vol. 121, 39-52, 2011.
    doi:10.2528/PIER11081712

    12. Gharakhili, F. G., M. Shahabadi, and M. Hakkak, "Bright and dark soliton generation in a left-handed nonlinear transmission line with series nonlinear capacitors," Progress In Electromagnetics Research, Vol. 96, 237-249, 2009.
    doi:10.2528/PIER09080106

    13. Khalique, C. M. and A. Biswas, "Optical solitons with parabolic and dual-power nonlinearity via lie symmetry analysis," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 963-973, 2009.
    doi:10.1163/156939309788355270

    14. Casperson, L. W. and A. A. Tovar, "Hermite-sinusoidal-Gaussian beams in complex optical systems," J. Opt. Soc. Am. A, Vol. 15, No. 4, 954-961, 1998.
    doi:10.1364/JOSAA.15.000954

    15. Chen, R. P., Y. Ni, and X. X. Chu, "Propagation of a cos-Gaussian beam in a Kerr medium," Opt. & Laser Tech., Vol. 43, No. 3, 483-487, 2011.
    doi:10.1016/j.optlastec.2010.07.005

    16. Tovar, A. A. and L. W. Casperson, "Production and propagation of Hermite-sinusoidal-Gaussian laser beams," J. Opt. Soc. Am. A, Vol. 15, No. 9, 2425-2432, 1998.
    doi:10.1364/JOSAA.15.002425

    17. Chen, R. P., H. P. Zheng, and X. X. Chu, "Propagation properties of a sinh-Gaussian beam in a Kerr medium," Appl. Phys. B, Vol. 102, 695-698, 2011.
    doi:10.1007/s00340-010-4157-9

    18. Chu, X. X., "Propagation of a cosh-Gaussian beam through an optical system in turbulent atmosphere," Opt. Express, Vol. 15, No. 26, 17613-17618, 2007.
    doi:10.1364/OE.15.017613

    19. Eyyuboglu, H. T. and Y. Baykal, "Reciprocity of cos-Gaussian and cosh-Gaussian laser beams in turbulent atmosphere," Opt. Express, Vol. 12, 4659-4674, 2004.
    doi:10.1364/OPEX.12.004659