Vol. 137
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-03-08
A Broadband Out-of-Phase Power Divider for High Power Applications Using through Ground via (Tgv)
By
Progress In Electromagnetics Research, Vol. 137, 653-667, 2013
Abstract
In this paper, we present a broadband out-of-phase power divider with high power-handling capability. The proposed device consists of several sections of double-sided parallel-strip lines (DSPSLs), a mid-inserted conductor plane, and two external isolation resistors, which are directly grounded for heat sinking. A through ground via (TGV), connecting the top and bottom sides of DSPSLs, is employed. The special metal via is realized to short the isolation resistors at full-frequency band when the odd-mode is excited. Meanwhile, it can be ignored as the excitation is even-mode. This property is efficiently utilized to improve the bandwidth. To examine the proposed power divider in detail, a set of closed-form equations are derived. Meanwhile, the power operation analysis illustrates that the proposed power divider is a good candidate for high power applications. The design charts show that the proposed device can support a wide frequency ratio range (1-1.7). Furthermore, broadband responses can be obtained when proper frequency ratios are adopted. For verification, an experimental power divider operating at 1.25/1.75 GHz is implemented. The measured results exhibit a bandwidth of 44.3% with better than 15 dB return loss and 18 dB port isolation is achieved.
Citation
Yun Long Lu, Gao-Le Dai, Xingchang Wei, and Erping Li, "A Broadband Out-of-Phase Power Divider for High Power Applications Using through Ground via (Tgv)," Progress In Electromagnetics Research, Vol. 137, 653-667, 2013.
doi:10.2528/PIER13010705
References

1. Kuo, J.-T., C.-Y. Fan, and S.-C. Tang, "Dual-wideband bandpass filters with extended stopband based on coupled-line and coupled," Progress In Electromagnetics Research, Vol. 124, 1-15, 2012.
doi:10.2528/PIER11120103

2. Wong, Y. S., S. Y. Zheng, and W. S. Chan, "Multifolded bandwidth branch line coupler with filtering characteristic using coupled port feeding," Progress In Electromagnetics Research, Vol. 118, 17-35, 2011.
doi:10.2528/PIER11041401

3. Kuo, J.-T. and C.-H. Tsai, "Generalized synthesis of rat race ring coupler and its application to circuit miniaturization," Progress In Electromagnetics Research, Vol. 108, 51-64, 2010.
doi:10.2528/PIER10071705

4. Wu, Y., Y. Liu, and S. Li, "An unequal dual-frequency Wilkinson power divider with optional isolation structure," Progress In Electromagnetics Research, Vol. 91, 393-411, 2009.
doi:10.2528/PIER09030501

5. Wilkinson, E., "An N-way hybrid power divider," IEEE Trans. Microw. Theory Tech., Vol. 8, No. 1, 116-118, Jan. 1960.
doi:10.1109/TMTT.1960.1124668

6. Deng, P.-H., J.-H. Guo, and W.-C. Kuo, "New Wilkinson power dividers based on compact stepped-impedance transmission lines and shunt open stubs," Progress In Electromagnetics Research, Vol. 123, 407-426, 2012.
doi:10.2528/PIER11111612

7. Wu, Y. and Y. Liu, "An unequal coupled-line Wilkinson power divider for arbitrary terminated impedances," Progress In Electromagnetics Research, Vol. 117, 181-194, 2011.

8. Chang, L., C. Liao, L.-L. Chen, W. Lin, X. Zheng, and Y.-L. Wu, "Design of an ultra-wideband power divider via the coarse-grained parallel micro-genetic algorithm," Progress In Electromagnetics Research, Vol. 124, 425-440, 2012.
doi:10.2528/PIER11120517

9. Ip, W. C. and K. K. M. Cheng, "A novel unequal power divider design with dual-harmonic rejection and simple structure," IEEE. Microw. Wireless Compon. Lett., Vol. 21, No. 4, 182-184, Apr. 2011.
doi:10.1109/LMWC.2011.2105469

10. Li, J., Y. Wu, Y. Liu, J. Shen, S. Li, and C. Yu, "A generalized coupled-line dual-band Wilkinson power divider with extended ports," Progress In Electromagnetics Research, Vol. 129, 197-214, 2012.

11. Wu, Y., Y. Liu, Y. Zhang, J. Gao, and H. Zhou, "A dual band unequal Wilkinson power divider without reactive components," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 1, 216-222, Jan. 2009.
doi:10.1109/TMTT.2008.2008981

12. Al-Zayed, A. S. and S. F. Mahmoud, "Seven ports power divider with various power division ratios," Progress In Electromagnetics Research, Vol. 114, 383-393, 2011.

13. Park, M. J., "Dual-band Wilkinson divider with coupled output port extensions," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2232-2237, Sep. 2009.
doi:10.1109/TMTT.2009.2027169

14. Ogawa, H., T. Hirota, and M. Aikawa, "New MIC power divider using coupled microstrip-slot lines: Two-sided MIC power divider," IEEE Trans. Microw. Theory Tech., Vol. 33, No. 11, 1155-1164, Nov. 1985.
doi:10.1109/TMTT.1985.1133188

15. Fan, L. and K. Chang, "A 180o out-of-phase power divider using asymmetrical coplanar stripline," IEEE Microw. Guid. Wave Lett., Vol. 6, No. 11, 404-406, Nov. 1996.
doi:10.1109/75.541454

16. Chen, J. X., C. H. K. Chin, K. W. Lau, and Q. Xue, "180o out-of-phase power divider based on double-sided parallel striplines," Electronics Lett., Vol. 42, No. 21, Oct. 2006.

17. Yang, T., J. X. Chen, X. Y. Zhang, and Q. Xue, "A dual-band out-of-phase power divider," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 3, 188-190, Mar. 2008.
doi:10.1109/LMWC.2008.916800

18. Dai, G. L., X. C. Wei, E. P. Li, and M. Y. Xia, "Novel dual-band out-of-phase power divider with high power-handling capability," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 8, 2403-2409, Aug. 2012.
doi:10.1109/TMTT.2012.2190745

19. Chen, J. X., C. H. K. Chin, and Q. Xue, "Double-sided parallel-strip line with an inserted conductor plane and its applications," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 9, 1899-1904, Sep. 2007.
doi:10.1109/TMTT.2007.904055

20. Pozar, D. M., Microwave Engineering, 3rd edition, 307-310, Wiley, New York, 2005.

21. Zhang, H., X.-W. Shi, F. Wei, and L. Xu, "Compact wideband Gysel power divider with arbitrary power division based on patch type structure," Progress In Electromagnetics Research, Vol. 119, 395-406, 2011.
doi:10.2528/PIER11071501

22. Sun, Z., L. Zhang, Y. Yan, and H. Yang, "Design of unequal dual-band Gysel power divider with arbitrary termination resistance," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 8, 1955-1962, Aug. 2011.
doi:10.1109/TMTT.2011.2153872

23. Oraizi, H. and A. R. Sharifi, "Optimum design of a wideband two-way Gysel power divider with source to load impedance matching," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 9, 2238-2248, Sep. 2009.
doi:10.1109/TMTT.2009.2027204

24. Oraizi, H. and A. R. Sharifi, "Optimum design of asymmetrical multi-section two-way power dividers with arbitrary power division and impedance matching," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 6, 1478-1490, Jun. 2011.
doi:10.1109/TMTT.2011.2124468