Vol. 138

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Terahertz Sensing Application by Using Fractal Geometries of Split-Ring Resonators

By Yanbing Ma, Huai-Wu Zhang, Yuanxun Li, Yicheng Wang, and Weien Lai
Progress In Electromagnetics Research, Vol. 138, 407-419, 2013


In this study, we report the simulation, fabrication and characterization of a dual-band fractal metamaterial used for terahertz sensing application. By applying the fractal structures of square Sierpinski (SS) curve to the split-ring resonators (SRRs), more compact size and higher sensitivity can be achieved as privileges over conventional SRRs. The influence of different geometrical parameters and the order of the fractal curve on the performances are investigated. Then overlayers are added to the fractal SRRs in order to explore the performance of the entire system in terms of sensing phenomenon. The changes in the transmission resonances are monitored upon variation of the overlayer thickness and permittivity. Measured results show good agreement with simulated data. At the second resonance of the second-order SS-SRRs, maximum frequency shifts of 19.8 GHz, 26.3 GHz and 37.8 GHz were observed for a 2 μm, 4 μm and 10 μm thickness of photoresist. The results show good sensitivity of the sensors suggesting they can be used for a myriad of terahertz sensing applications in biology and chemistry.


Yanbing Ma, Huai-Wu Zhang, Yuanxun Li, Yicheng Wang, and Weien Lai, "Terahertz Sensing Application by Using Fractal Geometries of Split-Ring Resonators," Progress In Electromagnetics Research, Vol. 138, 407-419, 2013.


    1. Ishimaru, A., S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metamaterials and negative index materials," Progress In Electromagnetics Research, Vol. 51, 139-152, 2005.

    2. Smith, , D. R., , W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.

    3. He, X., , Y. Wang, J. Wang, and T. Gui, , "Thin-film sensor based tip-shaped split ring resonator metamaterial for microwave application ," Microsyst. Technol., Vol. 16, No. 10, 1735-1739, 2010.

    4. Kante, , B., D. Germain, and A. De Lustrac, "Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies," Phys. Rev. B, Vol. 80, No. 20, 201104, 2009.

    5. La Spada, , L., , F. Bilotti, and L. Vegni, "Metamaterial-based sensor design working in infrared frequency range," Progress In Electromagnetics Research B,, Vol. 34, 205-223, 2011.

    6. Lee, H. Lee and H. Lee, "A dual-band metamaterial absorber based with resonant-magnetic structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012.

    7. Kuznetsov, S. A., , A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.

    8. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

    9. Pendry, , J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.

    10. Meng, , F. Y., Meng, F. Y., Y. L. Li, K. Zhang, Q. Wu, and J. L. W. Li, "A detached zero index metamaterial lens for antenna gain enhancement," Progress In Electromagnetics Research, Vol. 132, 463-478, 2012.

    11. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research , Vol. 98, 389-405, 2009.

    12. Siegel, P. H., "Terahertz technology in biology and medicine," IEEE Trans. on Microwave Theory and Tech., Vol. 52, No. 10, 2438-2447, 2004.

    13. Withayachumnankul, , W. and D. Abbott, "Metamaterials in the terahertz regime," IEEE Photon. J., Vol. 1, No. 2, 99-118, 2009.

    14. Tao, , H., W. J. Padilla, X. Zhang, and R. D. Averitt, "Recent progress in electromagnetic metamaterial devices for terahertz applications," IEEE J. Sel. Top. Quantum Electron., Vol. 17, No. 1, 92-101, 2011.

    15. Miyamaru, , F., , et al., "Terahertz electric response of fractal metamaterial structures," Phys. Rev. B., Vol. 77, No. 4, 045124, 2008.

    16. Miyamaru, , F., , S. Kubota, and M. W. Takeda, "Optics express optics letters," Appl. Phys. Express, Vol. 5, No. 7, 2001, 2012.

    17. De la Mata Luque, , T. M., , N. R. K. Devarapalli, and C. G. Christodoulou, "Investigation of bandwidth enhancement in volumetric left-handed metamaterials using fractals," Progress In Electromagnetics Research,, Vol. 131, 185-194, 2012.

    18. O'Hara, , J. F., , W. Withayachumnankul, and I. Al-Naib, "A review on thin-film sensing with terahertz waves," J. Infrared Millim. Terahertz Waves, Vol. 33, 245-291, 2012.

    19. Bingham, , C. M., , H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, "Planar wallpaper group metamaterials for novel terahertz applications," Opt. Express, Vol. 16, No. 23, 18565-18575, 2008.

    20. Padilla, , W. J., , A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett.,, Vol. 96, No. 10, 107401, 2006.

    21. Miyamaru, F., et al., "Emission of terahertz radiations from fractal antennas," Appl. Phys. Lett., Vol. 95, No. 22, 221111-221111-3, 2009.

    22. Chiam, S. Y., , R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, "Increased frequency shifts in high aspect ratio terahertz split ring resonators," Appl. Phys. Lett., Vol. 94, No. 6, 064102-064102-3, 2009.

    23. Chiam, , S. Y., R. Singh, W. Zhang, and A. A. Bettiol, "Controlling metamaterial resonances via dielectric and aspect ratio effects," Appl. Phys. Lett., Vol. 97, No. 19, 191906-191906-3, 2010..

    24. Tao, , H., , et al., "Performance enhancement of terahertz metamate-rials on ultrathin substrates for sensing applications," Appl. Phys. Lett.,, Vol. 97, No. 26, 261909-261909-3, 2010.

    25. Tao, , H., , et al., "Terahertz metamaterials on free-standing highly-flexible polyimide substrates," J. Phys. D: Appl. Phys., Vol. 40, 232004, 2008.