Vol. 138

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-03-28

Terahertz Sensing Application by Using Fractal Geometries of Split-Ring Resonators

By Yanbing Ma, Huai-Wu Zhang, Yuanxun Li, Yicheng Wang, and Weien Lai
Progress In Electromagnetics Research, Vol. 138, 407-419, 2013
doi:10.2528/PIER13010702

Abstract

In this study, we report the simulation, fabrication and characterization of a dual-band fractal metamaterial used for terahertz sensing application. By applying the fractal structures of square Sierpinski (SS) curve to the split-ring resonators (SRRs), more compact size and higher sensitivity can be achieved as privileges over conventional SRRs. The influence of different geometrical parameters and the order of the fractal curve on the performances are investigated. Then overlayers are added to the fractal SRRs in order to explore the performance of the entire system in terms of sensing phenomenon. The changes in the transmission resonances are monitored upon variation of the overlayer thickness and permittivity. Measured results show good agreement with simulated data. At the second resonance of the second-order SS-SRRs, maximum frequency shifts of 19.8 GHz, 26.3 GHz and 37.8 GHz were observed for a 2 μm, 4 μm and 10 μm thickness of photoresist. The results show good sensitivity of the sensors suggesting they can be used for a myriad of terahertz sensing applications in biology and chemistry.

Citation


Yanbing Ma, Huai-Wu Zhang, Yuanxun Li, Yicheng Wang, and Weien Lai, "Terahertz Sensing Application by Using Fractal Geometries of Split-Ring Resonators," Progress In Electromagnetics Research, Vol. 138, 407-419, 2013.
doi:10.2528/PIER13010702
http://jpier.org/PIER/pier.php?paper=13010702

References


    1. Ishimaru, A., S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metamaterials and negative index materials," Progress In Electromagnetics Research, Vol. 51, 139-152, 2005.
    doi:10.2528/PIER04020603

    2. Smith, , D. R., , W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    3. He, X., , Y. Wang, J. Wang, and T. Gui, , "Thin-film sensor based tip-shaped split ring resonator metamaterial for microwave application ," Microsyst. Technol., Vol. 16, No. 10, 1735-1739, 2010.
    doi:10.1007/s00542-010-1080-2

    4. Kante, , B., D. Germain, and A. De Lustrac, "Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies," Phys. Rev. B, Vol. 80, No. 20, 201104, 2009.
    doi:10.1103/PhysRevB.80.201104

    5. La Spada, , L., , F. Bilotti, and L. Vegni, "Metamaterial-based sensor design working in infrared frequency range," Progress In Electromagnetics Research B,, Vol. 34, 205-223, 2011.

    6. Lee, H. Lee and H. Lee, "A dual-band metamaterial absorber based with resonant-magnetic structures," Progress In Electromagnetics Research Letters, Vol. 33, 1-12, 2012.

    7. Kuznetsov, S. A., , A. G. Paulish, A. V. Gelfand, P. A. Lazorskiy, and V. N. Fedorinin, "Matrix structure of metamaterial absorbers for multispectral terahertz imaging," Progress In Electromagnetics Research, Vol. 122, 93-103, 2012.
    doi:10.2528/PIER11101401

    8. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

    9. Pendry, , J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    10. Meng, , F. Y., Meng, F. Y., Y. L. Li, K. Zhang, Q. Wu, and J. L. W. Li, "A detached zero index metamaterial lens for antenna gain enhancement," Progress In Electromagnetics Research, Vol. 132, 463-478, 2012.

    11. Gong, Y. and G. Wang, "Superficial tumor hyperthermia with flat left-handed metamaterial lens," Progress In Electromagnetics Research , Vol. 98, 389-405, 2009.
    doi:10.2528/PIER09091401

    12. Siegel, P. H., "Terahertz technology in biology and medicine," IEEE Trans. on Microwave Theory and Tech., Vol. 52, No. 10, 2438-2447, 2004.
    doi:10.1109/TMTT.2004.835916

    13. Withayachumnankul, , W. and D. Abbott, "Metamaterials in the terahertz regime," IEEE Photon. J., Vol. 1, No. 2, 99-118, 2009.
    doi:10.1109/JPHOT.2009.2026288

    14. Tao, , H., W. J. Padilla, X. Zhang, and R. D. Averitt, "Recent progress in electromagnetic metamaterial devices for terahertz applications," IEEE J. Sel. Top. Quantum Electron., Vol. 17, No. 1, 92-101, 2011.
    doi:10.1109/JSTQE.2010.2047847

    15. Miyamaru, , F., , et al., "Terahertz electric response of fractal metamaterial structures," Phys. Rev. B., Vol. 77, No. 4, 045124, 2008.
    doi:10.1103/PhysRevB.77.045124

    16. Miyamaru, , F., , S. Kubota, and M. W. Takeda, "Optics express optics letters," Appl. Phys. Express, Vol. 5, No. 7, 2001, 2012.
    doi:10.1143/APEX.5.072001

    17. De la Mata Luque, , T. M., , N. R. K. Devarapalli, and C. G. Christodoulou, "Investigation of bandwidth enhancement in volumetric left-handed metamaterials using fractals," Progress In Electromagnetics Research,, Vol. 131, 185-194, 2012.

    18. O'Hara, , J. F., , W. Withayachumnankul, and I. Al-Naib, "A review on thin-film sensing with terahertz waves," J. Infrared Millim. Terahertz Waves, Vol. 33, 245-291, 2012.
    doi:10.1007/s10762-012-9878-x

    19. Bingham, , C. M., , H. Tao, X. Liu, R. D. Averitt, X. Zhang, and W. J. Padilla, "Planar wallpaper group metamaterials for novel terahertz applications," Opt. Express, Vol. 16, No. 23, 18565-18575, 2008.
    doi:10.1364/OE.16.018565

    20. Padilla, , W. J., , A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett.,, Vol. 96, No. 10, 107401, 2006.
    doi:10.1103/PhysRevLett.96.107401

    21. Miyamaru, F., et al., "Emission of terahertz radiations from fractal antennas," Appl. Phys. Lett., Vol. 95, No. 22, 221111-221111-3, 2009.
    doi:10.1063/1.3271181

    22. Chiam, S. Y., , R. Singh, J. Gu, J. Han, W. Zhang, and A. A. Bettiol, "Increased frequency shifts in high aspect ratio terahertz split ring resonators," Appl. Phys. Lett., Vol. 94, No. 6, 064102-064102-3, 2009.
    doi:10.1063/1.3079419

    23. Chiam, , S. Y., R. Singh, W. Zhang, and A. A. Bettiol, "Controlling metamaterial resonances via dielectric and aspect ratio effects," Appl. Phys. Lett., Vol. 97, No. 19, 191906-191906-3, 2010..
    doi:10.1063/1.3514248

    24. Tao, , H., , et al., "Performance enhancement of terahertz metamate-rials on ultrathin substrates for sensing applications," Appl. Phys. Lett.,, Vol. 97, No. 26, 261909-261909-3, 2010.
    doi:10.1063/1.3533367

    25. Tao, , H., , et al., "Terahertz metamaterials on free-standing highly-flexible polyimide substrates," J. Phys. D: Appl. Phys., Vol. 40, 232004, 2008.
    doi:10.1088/0022-3727/41/23/232004