Vol. 123

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-12-20

Deformable, Time-Varying Boundary Problems in Electrodynamics

By M. J. Mehler, Constantinos Constantinou, and M. J. Neve
Progress In Electromagnetics Research, Vol. 123, 227-241, 2012
doi:10.2528/PIER11102003

Abstract

A novel perturbation technique is formulated that enables the efficient calculation of current on surfaces undergoing time-varying mechanical deformations. The technique computes the current on the perturbed surface using as its starting point the solution for a related static case. This is initially derived using a standard analytical or numerical technique. The key advantage of this approach is that only an initial (computationally expensive) electromagnetic characterisation of the static problem is required. The surface current perturbation terms (and hence the radiated fields) are then directly computed from the static problem with a very low computational overhead.

Citation


M. J. Mehler, Constantinos Constantinou, and M. J. Neve, "Deformable, Time-Varying Boundary Problems in Electrodynamics," Progress In Electromagnetics Research, Vol. 123, 227-241, 2012.
doi:10.2528/PIER11102003
http://jpier.org/PIER/pier.php?paper=11102003

References


    1. Abdelazeez, M., L. Peach, and S. Borkar, "Scattering of electromagnetic waves from moving surfaces," IEEE Trans. Antennas Propagat., Vol. 27, No. 5, 679-684, 1979.
    doi:10.1109/TAP.1979.1142162

    2. Kleinman, R. and R. Mack, "Scattering by linearly vibrating objects," IEEE Trans. Antennas Propagat., Vol. 27, No. 3, 344-352, 1979.
    doi:10.1109/TAP.1979.1142085

    3. Van Bladel, J. and D. De Zutter, "Reflections from linearly vibrating objects: Plane mirror at normal incidence," IEEE Trans. Antennas Propagat., Vol. 29, No. 4, 629-637, 1981.
    doi:10.1109/TAP.1981.1142645

    4. Ho, M., "One-dimensional simulation of reflected EM pulses from objects vibrating at different frequencies," Progress In Electromagnetics Research, Vol. 53, 239-248, 2005.
    doi:10.2528/PIER04100502

    5. Ho, M., "Numerical simulation of scattering of electromagnetic waves from traveling and/or vibrating perfect conducting planes," IEEE Trans. Antennas Propagat., Vol. 54, No. 1, 152-156, 2006.
    doi:10.1109/TAP.2005.861552

    6. Ho, M., "Simulation of scattered em fields from rotating cylinder using passing center swing back grids technique in two dimensions," Progress In Electromagnetics Research, Vol. 92, 79-90, 2009.
    doi:10.2528/PIER09030302

    7. Pelloni, B. and D. A. Pinotsis, "Moving boundary value problems for the wave equation," Journal of Comp. and Appl. Math., Vol. 234, 1685-1691, 2010.
    doi:10.1016/j.cam.2009.08.016

    8. Harrington, R. F., Field Computation by Moment Methods, Wiley, 1993.
    doi:10.1109/9780470544631

    9. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Boston, 2005.

    10. Armenta, R. B. and C. D. Sarris, "Exploiting the relativistic formulation of maxwells equations to introduce moving grids into finite difference time domain solvers," Proc. IEEE Intl. Microw. Symp. (MTT-S), 93-96, 2010.
    doi:10.1109/MWSYM.2010.5517127

    11. Marcuse, D., Theory of Dielectric Optical Waveguides, Academic Press, 1991.

    12. Johnson, S. G., M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, "Perturbation theory for maxwells equations with shifting material boundaries," Phys. Rev. E, Vol. 65, 066611, 2002.
    doi:10.1103/PhysRevE.65.066611

    13. Wait, J. R., Introduction to Antennas and Propagation, Peregrinus, London, 1986.

    14. Ahmed, S. and Q. A. Naqvi, "Electromagnetic scattering from a perfect electromagnetic conductor cylinder buried in a dielectric half-space," Progress In Electromagnetics Research, Vol. 78, 25-38, 2008.
    doi:10.2528/PIER07081601

    15. Henin, B. H., A. Z. Elsherbeni, and M. H. Al Sharkawy, "Oblique incidence plane wave scattering from an array of circular dielectric cylinders," Progress In Electromagnetics Research, Vol. 68, 261-279, 2007.
    doi:10.2528/PIER06083102

    16. Yan, W.-Z., Y. Du, Z. Li, E.-X. Chen, and J.-C. Shi, "Characterization of the validity region of the extended T-matrix method for scattering from dielectric cylinders with finite length," Progress In Electromagnetics Research, Vol. 96, 309-328, 2009.
    doi:10.2528/PIER09083101

    17. Kreyszig, E., Differential Geometry, Dover, New York, 1991.

    18. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1975.

    19. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.