Vol. 116

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-05-03

Artificial Magnetic Properties of Dielectric Metamaterials in Terms of Effective Circuit Model

By Lingyun Liu, Jingbo Sun, Xiaojian Fu, Ji Zhou, Qian Zhao, Bo Fu, Jiaping Liao, and Didier Lippens
Progress In Electromagnetics Research, Vol. 116, 159-170, 2011
doi:10.2528/PIER11033004

Abstract

An effective series RLC model for the electromagnetic response of weakly absorbing dielectric sphere near the first magnetic dipole resonance was developed, and the effective magnetic properties of Mie resonance-based dielectric metamaterials were obtained in terms of this model. In comparison with traditional effective medium theory such as extended Maxwell-Garnett (EMG) theory based on Mie model, this approach is more intuitive and can give an analytical dependence of the magnetic properties of the composite on the electromagnetic and geometric parameters of the constituting dielectric particles.

Citation


Lingyun Liu, Jingbo Sun, Xiaojian Fu, Ji Zhou, Qian Zhao, Bo Fu, Jiaping Liao, and Didier Lippens, "Artificial Magnetic Properties of Dielectric Metamaterials in Terms of Effective Circuit Model," Progress In Electromagnetics Research, Vol. 116, 159-170, 2011.
doi:10.2528/PIER11033004
http://jpier.org/PIER/pier.php?paper=11033004

References


    1. Ramakrishna, S. A., "Physics of negative refractive index materials," Rep. Prog. Phys., Vol. 68, 449-521, 2005.
    doi:10.1088/0034-4885/68/2/R06

    2. Zhao, Q., J. Zhou, F. Zhang, and D. Lippens, "Mie resonance based dielectric metamaterial," Materials Today, Vol. 12, 60-69, 2009.
    doi:10.1016/S1369-7021(09)70318-9

    3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Techn., Vol. 47, 2075-2084, 1999.
    doi:10.1109/22.798002

    4. Shelby, R., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
    doi:10.1126/science.1058847

    5. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    6. Gorkunov, M., M. Lapine, E. Shamonina, and K. H. Ringhofer, "Effective magnetic properties of a composite material with circular conductive elements ," Eur. Phys. J. B, Vol. 28, 263-269, 2002.
    doi:10.1140/epjb/e2002-00228-4

    7. Enkrich, C., M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic metamaterials at telecommunication and visible frequencies," Phys. Rev. Lett., Vol. 95, 203-901, 2005.
    doi:10.1103/PhysRevLett.95.203901

    8. Linden, S., C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 Terahertz," Science, Vol. 306, 1351-1354, 2004.
    doi:10.1126/science.1105371

    9. Chen, H., L. Ran, J. Huangfu, X. M. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Magnetic properties of S-shaped split-ring resonators," Progress In Electromagnetics Research, Vol. 51, 231, 2005.
    doi:10.2528/PIER04051201

    10. Chen, H., L. X. Ran, B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Crankled S-ring resonator with small electrical size," Progress In Electromagnetics Research, Vol. 66, 179-190, 2006.
    doi:10.2528/PIER06112003

    11. Dolling, G., C. Enkrich, and M. Wegener, "Low-loss negative-index metamaterial at telecommunication wavelengths," Science, Vol. 312, 892-894, 2006.
    doi:10.1126/science.1126021

    12. Kafesaki, M., I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, "Left-handed metamaterials: The fishnet structure and its variations," Phys. Rev. B, Vol. 75, 235114, 2007.
    doi:10.1103/PhysRevB.75.235114

    13. Marqués, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bian-isotropy in negative permeability and left-handed metamaterials," Phys. Rev. B, Vol. 65, 144440, 2002.
    doi:10.1103/PhysRevB.65.144440

    14. Chen, H., L. Ran, and J. Huangfu, "Equivalent circuit model for left-handed metamaterials," J. Appl. Phys., Vol. 100, 024915, 2006.
    doi:10.1063/1.2219986

    15. O'Brien, S. and J. B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Phys.: Condens. Matter., Vol. 14, 4035-4044, 2002.
    doi:10.1088/0953-8984/14/15/317

    16. Wang, R., J. Zhou, C.-Q. Sun, L. Kang, Q. Zhao, and J.-B. Sun, "Lefted-handed materials based on crystal lattice vibration," Progress In Electromagnetics Research Letters, Vol. 10, 145-155, 2009.
    doi:10.2528/PIERL09070807

    17. Jylhä, L., I. Kolmakov, S. Maslovski, and S. Tretyakov, "Modeling of isotropic backward-wave materials composed of resonant spheres," J. Appl. Phys., Vol. 99, 043102, 200.
    doi:10.1063/1.2173309

    18. Wheeler, M. S., J. S. Aitchison, and M. Mojahedi, "Coated nonmagnetic spheres with a negative index of refraction at infrared frequencie ," Phys. Rev. B, Vol. 73, 045105, 2006.
    doi:10.1103/PhysRevB.73.045105

    19. Yannopapas, V. and N. V. Vitanov, "Photoexcitation-induced magnetism in arrays of semiconductor nanoparticles with a strong excitonic oscillator strength ," Phys. Rev. B, Vol. 74, 193304, 2006.
    doi:10.1103/PhysRevB.74.193304

    20. Zhao, Q., L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," Phys. Rev. Lett., Vol. 101, 027402, 2008.
    doi:10.1103/PhysRevLett.101.027402

    21. Doyle, W. T., "Optical properties of a suspension of metal spheres," Phys. Rev. B, Vol. 39, 9852-9858, 1989.
    doi:10.1103/PhysRevB.39.9852

    22. Grimes, C. A. and D. M. Grimes, "Permeability and permittivity spectra of grannular materials," Phys. Rev. B, Vol. 43, 10780-10788, 1991.
    doi:10.1103/PhysRevB.43.10780

    23. Ruppin, R., "Evaluation of extended Maxwell-Garnett theories," Opt. Commun., Vol. 182, 273-279, 2000.
    doi:10.1016/S0030-4018(00)00825-7

    24. Videen, G. and W. S. Bickel, "Light-scattering resonances in small spheres," Phys. Rev. A, Vol. 45, 6008-6012, 1992.
    doi:10.1103/PhysRevA.45.6008

    25. Chen, X., T. M. Grzegorczyk, B. Wu, J. Pacheco, Jr., and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
    doi:10.1103/PhysRevE.70.016608

    26. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
    doi:10.1103/PhysRevE.71.036617

    27. Wheeler, M. S., J. S. Aitchison, and M. Mojahedi, "Coupled magnetic dipole resonances in sub-wavelength dielectric particle clusters," J. Opt. Soc. Am. B, Vol. 27, 1083-1091, 2010.
    doi:10.1364/JOSAB.27.001083

    28. Peng, L., L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, "Experimental observation of left-handed behavior in an array of standard dielectric resonators," Phys. Rev. Lett., Vol. 98, 157403, 2010.
    doi:10.1103/PhysRevLett.98.157403