Vol. 113

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-02-03

Very Compact Full Differential Bandpass Filter with Transformer Integrated Using Integrated Passive Device Technology

By Sung-Mao Wu, Chun-Ting Kuo, and Chien-Hsun Chen
Progress In Electromagnetics Research, Vol. 113, 251-267, 2011
doi:10.2528/PIER10121701

Abstract

In this study, a very compact, second-order, full differential bandpass filter is presented. To achieve compact circuit area and system-in-package (SiP) applications, the transformer structure is integrated using integrated passive device (IPD) technology on a glass substrate. The coupled resonator synthesis method is used to achieve the bandpass filter design and suitably adjust the tapped feed-lines to obtain good impedance match at all ports. The area (1.27 mm×1.27 mm) of the bandpass filter is effectively reduced, and the performance, as measured by insertion loss (2.5 dB) and CMRR (>30 dB), is still acceptable with such a compact area. Most importantly, this full differential bandpass filter is also suitable for SiP applications, as other studies implemented using glass IPD technology have demonstrated.

Citation


Sung-Mao Wu, Chun-Ting Kuo, and Chien-Hsun Chen, "Very Compact Full Differential Bandpass Filter with Transformer Integrated Using Integrated Passive Device Technology," Progress In Electromagnetics Research, Vol. 113, 251-267, 2011.
doi:10.2528/PIER10121701
http://jpier.org/PIER/pier.php?paper=10121701

References


    1. Kung, C.-Y., Y.-C. Chen, S.-M. Wu, C.-F. Yang, and J.-S. Sun, "A novel compact 2.4/5.2 GHz dual wideband bandpass filter with deep transmission zero," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 617-628, 2011.
    doi:10.1163/156939311794827168

    2. Razalli, M. S., A. Ismail, M. A. Mahdi, and M. N. Bin Hamidon, "Novel compact microstrip ultra-wideband filter utilizing short-circuited stubs with less vias," Progress In Electromagnetics Research, Vol. 88, 91-104, 2008.
    doi:10.2528/PIER08102303

    3. Yang, R.-Y., C.-M. Hung, C.-Y. Hung, and C.-C. Lin, "Design of a high band isolation diplexer for GPS and WLAN system using modified stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 107, 101-114, 2010.
    doi:10.2528/PIER10060913

    4. Yang, R.-Y., C.-M. Hung, C.-Y. Hung, and C.-C. Lin, "A high performance bandpass filter with a wide and deep stopband by using square stepped impedance resonators," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1673-1683, 2010.
    doi:10.1163/156939310792149722

    5. Wu, H.-W. and R.-Y. Yang, "Design of a triple-passband microstrip bandpass filter with compact size," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2333-2341, 2010.
    doi:10.1163/156939310793675736

    6. Chen, J., Z.-B.Weng, Y.-C. Jiao, and F.-S. Zhang, "Lowpass filter design of hilbert curve ring defected ground structure," Progress In Electromagnetics Research, Vol. 70, 269-280, 2007.
    doi:10.2528/PIER07012603

    7. NaghshvarianJahromi, M., "Novel compact meta-material tunable quasi elliptic band-pass filter using microstrip to slotline transition," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2371-2382, 2010.
    doi:10.1163/156939310793675808

    8. Shen, W., W. Y. Yi, and X.-W. Sun, "Compact microstrip tri-section bandpass filters with mixed couplings," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1807-1816, 2010.

    9. Lin, S. C., C. H. Wang, and C. H. Chen, "Novel patch-via-spiral resonators for the development of miniaturized bandpass filters with transmission zeros," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 137-146, 2007.
    doi:10.1109/TMTT.2006.888579

    10. Chen, C. F., T. Y. Huang, and R. B.Wu, "Novel compact net-type resonators and their applications to microstrip bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 755-762, 2006.
    doi:10.1109/TMTT.2005.862626

    11. Lim, T. B. and L. Zhu, "Differential-mode wideband bandpass filter with three transmission zeros under common-mode operation," Asia Pacific Microwave Conference, APMC 2009, 159-162, 2009.
    doi:10.1109/APMC.2009.5385398

    12. Lim, T. B. and L. Zhu, "A differential-mode wideband bandpass filter on microstrip line for UWB application," IEEE Microwave and Wireless Components Letters, Vol. 19, 632-634, 2009.

    13. Lim, T. B. and L. Zhu, "Differential-mode ultra-wideband bandpass filter on microstrip line," Electronics Letters, Vol. 45, 1124-1125, 2009.
    doi:10.1049/el.2009.1416

    14. Wu, C. H., C. H.Wang, and C. H. Chen, "Novel Balanced coupled-line bandpass filters with common-mode noise suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 287-295, 2007.
    doi:10.1109/TMTT.2006.889147

    15. Wu, C. H., C. H. Wang, and C. H. Chen, "Stopband-extended balanced bandpass filter using coupled stepped-impedance resonators," IEEE Microwave and Wireless Components Letters, Vol. 17, 507-509, 2007.
    doi:10.1109/LMWC.2007.899311

    16. Wu, C. H., C. H. Wang, and C. H. Chen, "Balanced coupled-resonator bandpass filters using multisection resonators for common-mode suppression and stopband extension," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, 1756-1763, 2007.
    doi:10.1109/TMTT.2007.901609

    17. Jin, S. and X. Quan, "Balanced bandpass filters using center-loaded half-wavelength resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 970-977, 2010.
    doi:10.1109/TMTT.2010.2042839

    18. Shi, J., J. X. Chen, and Q. Xue, "A novel differential bandpass filter based on double-sided parallel-strip line dual-mode resonator," Microwave and Optical Technology Letters, Vol. 50, 1733-1735, 2008.
    doi:10.1002/mop.23493

    19. Zoschke, K., M. J. Wolf, M. Topper, O. Ehrmann, T. Fritzsch, K. Kaletta, F. J. Schmuckle, and H. Reichl, "Fabrication of application specific integrated passive devices using wafer level packaging technologies," IEEE Transactions on Advanced Packaging, Vol. 30, 359-368, 2007.
    doi:10.1109/TADVP.2007.901770

    20. Clearfield, H. M., J. L. Young, S. D. Wijeyesekera, and E. A. Logan, "Wafer-level chip scale packaging: Benefits for integrated passive devices," IEEE Transactions on Advanced Packaging, Vol. 23, 247-251, 2000.
    doi:10.1109/6040.846642

    21. Wang, C.-C., H.-A. Yang, Y. C. Shyu, M.-H. Li, C.-T. Chiu, and C.-P. Hung, "Analysis of high performance RF integrated passive circuits using the glass substrate," IEEE 9th VLSI Packaging Workshop of Japan, VPWJ 2008, 135-138, 2008.
    doi:10.1109/VPWJ.2008.4762233

    22. Ulrich, R. and L. Schaper, Integrated Passive Component Technology, 1st Edition, Wiley-IEEE Press, 2003.
    doi:10.1002/9780471722939

    23. Long, J. R., "Monolithic transformers for silicon RF IC design," IEEE Journal of Solid-state Circuits, Vol. 35, 1368-1382, 2000.
    doi:10.1109/4.868049

    24. Huang, C. H., T.-C. Wei, T.-S. Horng, J.-Y. Li, C.-C. Chen, C.-C. Wang, C.-T. Chiu, and C.-P. Hung, "Design and modeling of planar transformer-based silicon integrated passive devices for wireless applications," IEEE Radio Frequency Integrated Circuits Symposium, RFIC 2009, 167-170, 2009.
    doi:10.1109/RFIC.2009.5135514

    25. Chen, C.-H., C.-H. Huang, T.-S. Horng, S.-M. Wu, C.-T. Chiu, C.-P. Hung, J.-Y. Li, and C.-C. Chen, "Very compact transformer-coupled balun-integrated bandpass filter using integrated passive device technology on glass substrate," 2010 IEEE MTT-S International Microwave Symposium Digest (MTT), 1372-1375, 2010.

    26. Hongtak, L., P. Changkun, and H. Songcheol, "A Quasi-four-pair class-E CMOS RF power amplifier with an integrated passive device transformer," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 752-759, 2009.
    doi:10.1109/TMTT.2009.2015122

    27. Chen, H.-K., Y.-C. Hsu, T.-Y. Lin. D.-C. Chang. Y.-Z. Juang, and S.-S. Lu, "CMOS wideband LNA design using integrated passive device," IEEE MTT-S International Microwave Symposium Digest, MTT'09, 673-676, 2009.

    28. Grima, M. L., S. Barth, S. Bosse, B. Jarry, P. Gamand, P. Meunier, and B. Barelaud, "A differential SiP (LNA-filter-mixer) in silicon technology for the SKA project," European Microwave Conference, 1129-1132, 2007.
    doi:10.1109/EUMC.2007.4405397

    29. Zampardi, P., "Performance and modeling of Si and SiGe for power amplifiers," 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 13-17, 2007.
    doi:10.1109/SMIC.2007.322758

    30. Yu, J.-I., J.-M. Yook, J.-C. Park, C.-H. Kim, and Y.-S. Kwon, "Compact front end modules for WLAN applications with integrated passive devices using selectively anodized aluminum substrate," 2010 European Microwave Integrated Circuits Conference (EuMIC), 329-332, 2010.

    31. Hong, J.-S. G. and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2001.
    doi:10.1002/0471221619

    32. Bockelman, D. E. and W. R. Eisenstadt, "Combined differential and common-mode scattering parameters: Theory and simulation," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, 1530-1539, 1995.
    doi:10.1109/22.392911

    33. Eisenstadt, W. R., B. Stengel, and B. M. Thompson, Microwave Differential Circuit Design Using Mixed-mode S-parameters, Artech House, Boston, 2006.