Vol. 81
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-04-24
Application of SVD Noise-Reduction Technique to PCA Based Radar Target Recognition
By
Progress In Electromagnetics Research, Vol. 81, 447-459, 2008
Abstract
The noise effect is very challenging in radar target recognition. It usually degrades the accuracy of target recognition and then makes the recognition unreliable. In this study, we present a noise-reduction technique to improve the accuracy of radar target recognition. Our noise-reduction technique is based on the SVD (singular value decomposition). The PCA (principal components analysis) based radar recognition algorithm is utilized to verify our noise-reduction scheme. In our treatment, the received signals are arranged into a Hankel-form matrix. This Hankel-form matrix is decomposed into two subspaces, i.e., the noise-related subspace and clean-signal subspace. The noise reduction is obtained by suppressing the noise-related subspace and retaining the clean-signal space only. Simulation results show that the accuracy of target recognition is greatly improved as the received signals are first processed by the SVD noise-reduction technique. With the use of proposed noise-reduction scheme, the radar target recognition can tolerate more noises and then becomes more reliable. The noise-reduction technique in this study can also be applied to many other problems in radar engineering.
Citation
Kun-Chou Lee, Jhih-Sian Ou, and Ming-Chung Fang, "Application of SVD Noise-Reduction Technique to PCA Based Radar Target Recognition," Progress In Electromagnetics Research, Vol. 81, 447-459, 2008.
doi:10.2528/PIER08032101
References

1. Hajduch G., J. M. Le Caillec and and R. Garello, "Airborne high-resolution ISAR imaging of ship targets at sea," IEEE Transactions on Aerospace and Electronic Systems, Vol. 40, No. 1, 378-384, 2004.
doi:10.1109/TAES.2004.1292177

2. Tello, M., C. Lopez-Martinez, and J. J. Mallorqui, "A novel algorithm for ship detection in SAR imagery based on the wavelet transform," IEEE Geoscience and Remote Sensing Letters, Vol. 2, No. 2, 201-205, 2005.
doi:10.1109/LGRS.2005.845033

3. Farhat, N. H., "Microwave diversity imaging and automated target identification based on models of neural networks," IEEE Proceedings, Vol. 77, No. 5, 670-681, 1989.

4. Moon, T. K. and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing, Prentice Hall, 2000.

5. Duda, R. O., P. E. Hart, and D. G. Stork, Pattern Classification, 2nd edition, John Wiley & Sons Inc., 2001.

6. Lee, K. C., J. S. Ou, and C. H. Huang, "Angular-diversity radar recognition of ships by transformation based approaches — including noise effects," Progress In Electromagnetics Research, Vol. 72, 145-158, 2007.
doi:10.2528/PIER07030901

7. Jensen, S. H., P. C. Hansen, S. D. Hansen, and J. A. Sorensen, "Reduction of broad-band noise in speech by truncated QSVD," IEEE Transactions on Speech and Audio Processing, Vol. 3, 439-448, 1995.
doi:10.1109/89.482211

8. Hermus, K.I. Dologlou, P. Wambacq, and D. V. Compernolle, "Fully adaptive svd-based noise removal for robust speech recognition," European Conference on Speech Communication and Technology, 1951-1954, 1999.

9. Konstantinides, K., B. Natarajan, and G. S. Yovanof, "Noise estimation and filtering using blockbased singular value decomposition," IEEE Transactions on Image Processing, Vol. 6, 479-483, 1997.
doi:10.1109/83.557359

10. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Vol. 1, Vol. 1, Plenum, New York, 1970.

11. Cui, B., J. Zhang, and X. W. Sun, "Single layer microstrip antenna arrays applied in millimeter-wave radar front-end," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 1, 3-15, 2008.
doi:10.1163/156939308783122797

12. Xue W. and X. W. Sun "Target detection of vehicle volume detecting radar based on Wigner-Hough transform," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1513-1523, 2007.

13. Wang, C. J., B. Y. Wen, Z. G. Ma, W. D. Yan, and X. J. Huang, "Measurement of river surface currents with UHF FMCW radar systems," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 375-386, 2007.
doi:10.1163/156939307779367350

14. Jung, J. H., H. T. Kim, and K. T. Kim, "Comparisons of four feature extraction approaches based on Fisher's linear discriminant criterion in radar target recognition," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 251-265, 2007.
doi:10.1163/156939307779378781

15. Wang, S. G., X. P. Guan, X. Y. Ma, D. W. Wang, and Y. Su, "Calculating the poles of complex radar targets," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2065-2076, 2065.
doi:10.1163/156939306779322657

16. Alivizatos, E. G., M. N. Petsios, and N. K. Uzunoglu, "Towards a range-doppler UHF multistatic radar for the detection of noncooperative targets with low RCS," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 15, 2015-2031, 2005.
doi:10.1163/156939305775570512

17. Capineri, L., D. Daniels, P. Falorni, O. Lopera, and C. Windsor, "Estimation of relative permittivity of shallow soils by using the ground penetrating radar response from different buried targets," Progress In Electromagnetics Research Letters, Vol. 2, 63-71, 2008.

18. Abdelaziz, A. A., "Improving the performance of an antenna array by using radar absorbing cover," Progress In Electromagnetics Research Letters, Vol. 1, 129-138, 2008.
doi:10.2528/PIERL07112503

19. Razevig, V. V., S. I. Ivashov, A. P. Sheyko, I. A. Vasilyev, and A. V. Zhuravlev, "An example of holographic radar using at restoration works of historical building," Progress In Electromagnetics Research Letters, Vol. 1, 173-179, 2008.
doi:10.2528/PIERL07120603

20. Hebeish, A. A., M. A. Elgamel, R. A. Abdelhady, and A. A. Abdelaziz, "Factors affecting the performance of the radar absorbant textile materials of different types and structus," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008.
doi:10.2528/PIERB07121702

21. Chan, Y. K. and V. C. Koo, "An introduction to synthetic aperture radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101