Vol. 31
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Coherence Characteristics of Radar Signals from Rough Soil
By
, Vol. 31, 69-88, 2001
Abstract
To understand the mechanisms of decorrelation in interferometric SAR (InSAR) images of bare soil, a model has been developed. Under the Kirchhoff and stationary phase approximations, coherence can be related to the statistical variations of dielectric constant and roughness parameters of surfaces. With the help of an empirical model for the dependence of dielectric constant on soil moisture, coherence due to the inhomogeneity of soil moisture is numerically demonstrated. It has been shown that the decorrelation of the radar signal from rough soil is mainly due to the moisture variability within the resolution cell. The effect of roughness on decorrelation is complex. The effect is negligible compared to that of the dielectric variability for homogeneous resolution cells (no dielectric variability within a resolution cell). However, the coherence depends strongly on the roughness parameters for resolution cells with large moisture variability. It is concluded that the loss of coherence induced by variability of dielectric constant can be related to the relative variation of moisture expressed by the ratio of standard deviation and mean value, and that large relative variations of moisture could lead to much decorrelation. If the moisture variability is small the coherence will be very high even if the values of mean moisture of the two SAR observations are different, which means that coherence can be high in spite of much backscatter differences.
Citation
X. Luo, J. Askne, G. Smith, and P. Dammert, "Coherence Characteristics of Radar Signals from Rough Soil," , Vol. 31, 69-88, 2001.
doi:10.2528/PIER00052903
References

1. Dammert, P. B. G., "Spaceborne SAR interferometry: Theory and applications,", Technical Report No. 382, ISBN 91-7197-851-8, School of Electrical and Computer Engineering, Chalmers University of Technology, Gothenburg, Sweden, 1999.
doi:10.1109/36.377933

2. Gens, R. and J. L. Van Genderen, , Review article: ``SAR interferometry-issues, techniques, applications,'' International Journal of Remote Sensing, Vol. 17, 1803–1835, 1996.

3. Hagberg, J. O., L. M. H. Ulander, and J. Askne, "Repeat pass SAR interferometry over forested terrain," IEEE Trans. Geosci. Remote Sensing, Vol. 33, 331-340, 1995.

4. Askne, J., P. B. G. Dammert, and G. Smith, "Understanding ERS InSAR coherence of boreal forests," IGARSS’99, 2111-2114, 1999.

5. Floury, N., T. L. Toan, J. C. Souyris, and J. Bruniquel, "A study of SAR interferometry over forests: theory and experiment," IGARSS’97, 1868-1870, 1997.

6. Rodriguez, E. and J. M. Martin, "Theory and design of interferometric synthetic aperture radars," IEE Proc-F, Vol. 139, No. 2, April 1992.
doi:10.1029/96RS01763

7. Smith, G., P. B. G. Dammert, and J. I. H. Askne, "Decorrelation mechanisms in C-band SAR interferometry over boreal forest," Microwave Sensing and Synthetic Aperture Radar, G. Franceschetti, C. J. Oliver, F. S. Rubertone, and S. Tajbakhsh, Editors, Proceedings of SPIE, Vol. 2958, 300–310, 1996.

8. Treuhaft, R. N., S. N. Madsen, M. Moghaddam, and J. J. van Zyl, "Vegetation characteristics and surface topography from interferometric radar," Radio Science, Vol. 31, 1449-1485, 1996.

9. Zebker, H. A. and J. Villasenso, "Decorrelation in interferometric radar echoes," IEEE Trans. Geosci. Remote Sensing, Vol. 30, No. 5, Sept. 1992.
doi:10.1163/156939397X00279

10. Franceschetti, G., A. Lodice, M. Migliaccio, and D. Riccio, "On the baseline decorrelation," IGARSS’96, 680-682, 1996.

11. Franceschetti, G., A. Lodice, M. Migliaccio, and D. Riccio, "The effect of surface scattering on IFSAR baseline decorrelation," J. Electromagnetic Waves & Applications, Vol. 11, 353-370, 1997.

12. Nesti, G., D. Tarchi, and J. P. Rudant, "Decorrelation of backscattered signal due to soil moisture changes," IGARSS’95, 2026-2028, 1995.

13. Nesti, G., D. Tarchi, D. Despan, J. P. Rudant, A. Bedidi, P. Borderies, and E. Bachelier, "Phase shift and decorrelation of radar signal related to soil moisture changes," Proc. of the 2nd International Workshop on Retrieval of Bio- & Geo-Physical Parameter from SAR Data for Land Applications, ESTEC, Noordwijk, The Netherlands, October 21–23, 1998. (ESA SP-441, 423–430, December 1998).
doi:10.1364/JOSAA.13.001057

14. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing, Active and Passive, Vol. 2, 931, Addison-Wesley Publishing Company, 1982.

15. Le, C., Y. Kuga, and A. Ishimaru, "Angular correlation function based on the second-order Kirchhoff approximation and comparison with experiments," J. Opt. Soc. Am. A, Vol. 13, No. 5, 1996.

16. Ulander, L. M. H. and J. O. Hagberg, "Radiometric and interferometric calibration of ENVISAT-1 ASAR,", Research Report No. 172, Department of Radio and Space Science with Onsala Space Observatory, Chalmers University of Technology, Gothenburg, Sweden, 1995.

17. Hallikainen, M., F. T. Ulaby, M. C. Dobson, M. El-Rayes, and L. K. Wu, "Microwave dielectric behavior of wet soil - Part I: Empirical models and experimental observations," IEEE Trans. Geosci. Remote Sensing, Vol. 23, 25-34.