Vol. 97
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-12-04
Systematic Design & Analysis of a 42 GHz Gyrotron and the Effects of Structure & Beam Parameters on Its RF Performance
By
Progress In Electromagnetics Research B, Vol. 97, 149-166, 2022
Abstract
The systematic design approach of a 42 GHz CW gyrotron has been extensively presented in this paper. Beam-wave interaction of the conventional tapered cylindrical cavity gyrotron is demonstrated using commercially available Particle-In-Cell (PIC) code. Beam absent and beam present cases have been considered to observe the performance of the device. Beam absent case is presented to validate the design in desired mode as well as resonant frequency whereas beam present case is demonstrated to validate and observe the beam-wave interaction behavior of the device in terms of output power. In order to optimize the dimension of interaction structure to achieve desired performance of the device, several parameters were considered. RF output power of the device is estimated with the variation of structure parameters as well as electron beam parameters to achieve better performance in terms of efficiency. Using the designed parameters, beam present analysis offers a saturated output power well above 250 kW. The particles phase space behavior along the interaction length is demonstrated to realize the energy transfer phenomena. The PIC simulation results are found in close agreement with the self-consistent single mode results. The estimated output power and efficiency support the proper design of proposed gyrotron oscillator.
Citation
Ashutosh Singh, and Pradeep Kumar Jain, "Systematic Design & Analysis of a 42 GHz Gyrotron and the Effects of Structure & Beam Parameters on Its RF Performance," Progress In Electromagnetics Research B, Vol. 97, 149-166, 2022.
doi:10.2528/PIERB22091405
References

1. Thumm, M., "State-of-the-art of high-power gyro-devices and free electron masers," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 41, No. 1, 1-140, 2020.
doi:10.1007/s10762-019-00631-y

2. Felch, K. L., B. G. Danly, H. R. Jory, K. E. Kreischer, W. Lawson, B. Levuson, and R. J. Temkin, "Characteristics and applications of fast-wave gyro-devices," Proceedings of the IEEE, Vol. 87, No. 5, 752-781, 1999.
doi:10.1109/5.757254

3. Singh, U., N. Kumar, T. P. Singh, et al. "A review on the applications of high power, high frequency microwave source: Gyrotron," J. Fusion Energy: Springer, Vol. 30, 257-276, 2011.

4. Krier, L., I. Gr. Pagonakis, K. A. Avramidis, G. Gantenbein, S. Illy, J. Jelonnek, J. Jin, H. P. Laqua, A. Marek, D. Moseev, M. Thumm, and W7-X Team, "Theoretical investigation on possible operation of a 140 GHz 1 MW gyrotron at 175 GHz for CTS plasma diagnostics at W7-X," Physics of Plasmas, Vol. 27, 113107, 2020.
doi:10.1063/5.0022151

5. Kumar, A., N. Kumar, U. Singh, V. Vyas, and A. K. Sinha, "RF behavior and cavity design for 0.3 THz, 4 kW gyrotron for material processing application," Infrared Physics & Technology, Vol. 55, No. 4, 337-344, 2012.
doi:10.1016/j.infrared.2012.02.008

6. Baja, V. S., M. K. Hornstein, K. E. Kreischer, J. R. Sirigir, P. P. Wosko, M. L. Mak-Jurkauska, J. Herzfel, R. J. Temki, and R. G. Griffin, "250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR," Journal of Magnetic Resonance, Vol. 189, 251-279, 2007.
doi:10.1016/j.jmr.2007.09.013

7. Edgcombe, C. J., Gyrotron Oscillators --- Their Principles and Practice, Taylor and Francis, London, 1993.

8. McDermott, D. B., N. C. Luhmann, Jr., D. S. Furuno, A. Kupiszewski, and H. R. Jory, "Operation of a millimeter-wave harmonic gyrotron," J. of Infrared Milli. Waves, Vol. 4, No. 4, 639-664, 1983.
doi:10.1007/BF01009401

9. Danly, B. G. and R. J. Temkin, "Generalized nonlinear harmonic gyrotron theory," Phys. Fluids, Vol. 29, 561-567, 1986.
doi:10.1063/1.865446

10. Geng, Z., R. Zhang, X. Yan, Y. Liao, and S. Xu, "Design and simulation of a W-band gyrotron oscillator based on self-consistent nonlinear theory," Microw. Opt. Technol. Lett., Vol. 62, 3175-3179, 2020.
doi:10.1002/mop.32458

11. Singh, A. and P. K. Jain, "RF behavior of a 35 GHz conventional cavity gyrotron using multimode analysis and PIC simulation," Journal of Electromagnetic Waves and Application, Vol. 35, No. 18, 2428-2446, 2021, doi: 10.1080/0920507.2021.1952655.
doi:10.1080/09205071.2021.1952655

12. Singh, U., U. Goswami, H. Khatun, N. Kumar, N. Shekhawat, A. Kumar, V. Yadav, M. K. Sharma, A. Mishra, S. K. Sharma, M. K. Alaria, A. Bera, R. R. Rao, and A. K. Sinha, "P3-1: Design of 42 GHz, 200 kW gyrotron," 2010 IEEE International Vacuum Electronics Conference (IVEC), 331-332, 2010, doi: 1.1109/IVELE.2010.5503414.
doi:10.1109/IVELEC.2010.5503414

13. Kartikeyan, M. V., A. Kumar, S. Kamakshi, P. K. Jain, S. Illy, E. Borie, B. Piosczyk, and M. K. Thumm, "RF-behavior of a 200 kW, CW gyrotron," IEEE Trans. Plasma Science, Vol. 20, No. 3, 631-636, June 2008.
doi:10.1109/TPS.2008.923762

14. Ludeking, L., Manual of MAGIC Tool Suite, ATK Mission Research Corporation, 2007.

15. Kreischer, K. E., B. G. Danly, J. B. Schutkeker, and R. J. Temkin, "The design of megawatt gyrotrons," IEEE Trans. Plasma Science, Vol. 13, No. 6, December 1985.
doi:10.1109/TPS.1985.4316447

16. Singh, A., B. Ravi Chandra, and P. K. Jain, "Multimode behavior of a 42 GHz, 200 kW gyrotron," Progress In Electromagnetics Research B, Vol. 42, 75-91, 2012.