Vol. 82
Latest Volume
All Volumes
PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-10-22
Design of a Short Range Continuous Wave Compound Phase Coded Linear Frequency Modulation Radar Sensor
By
Progress In Electromagnetics Research B, Vol. 82, 115-135, 2018
Abstract
The design of a low cost, short range radar sensor based upon a novel phase coded linear frequency waveform is discussed in this paper. The radar sensor utilizes a novel waveform that is produced using digital frequency synthesis techniques. Digital frequency synthesis techniques enable the generation of repeatable, highly linear frequency sweeps and provide a means for accurate application of phase codes to linear frequency modulations. The work presented contains analysis of the component linear frequency and phase code modulations that form the compound phase coded linear frequency modulation. The resulting compound phase coded linear frequency modulation is compared with the component modulations to demonstrate the performance improvement that can be achieved by the combining of radar waveform modulations enabled by modern digital frequency synthesis techniques. The compound phase coded linear frequency modulation waveform shows improved range resolution and suppression of range sidelobes over the individual component waveforms. The phase coded linear frequency modulation shows an improvement of 13 dB over the linear frequency modulation and is only 2 dB less than the phase code. It also achieves a 5 and 10 nanosecond narrower mainlobe autocorrelation peak than the phase code and linear frequency modulation, respectively. A notional signal processing architecture of the waveform is simulated to demonstrate the ability to process the compound waveform. Experimental data collected from a direct digital frequency synthesis based arbitrary waveform generator is compared with the simulated waveform. The compound waveform model and the experimental results show good agreement.
Citation
Jason Reneau, and Reza Adhami, "Design of a Short Range Continuous Wave Compound Phase Coded Linear Frequency Modulation Radar Sensor," Progress In Electromagnetics Research B, Vol. 82, 115-135, 2018.
doi:10.2528/PIERB18082006
References

1. Reneau, J. and R. Adhami, "Phase-coded LFMCW waveform analysis for short range measurement applications," IEEE Aerospace Conference, 1-6, Big Sky, MT, 2014.

2. Levanon, N., "CW alternatives to the coherent pulse," IEEE Transactions on Aerospace and Electronics Ystems, Vol. 29, No. 1, 250-254, 1993.
doi:10.1109/7.249132

3. Skolnik, M., Radar Handbook, McGraw-Hill, New York, NY, 2008.

4. Rubio-Cidre, G., A. Badolato, L. ´Ubeda-Medina, B. M.-O. J. Grajal, and B. P. Dorta-Naranjo, "DDS-based signal-generation architecture comparison for an imaging radar at 300 GHz," IEEE Transactions on Instrumentation and Measurement, Vol. 64, No. 11, 3085-3098, November 2015.
doi:10.1109/TIM.2015.2440557

5. Raghavendra, C. G., K. N. Bhat, M. P. R. Srivastsa, R. N. Murthy, P. V. Nayak, and N. N. S. S. R. K. Prasad, "A novel approach to generate OFDM radar signals," International Conference on Electrical, Electronics, Communication, Computer and Optimization Techniques (ICEECCOT), 141-145, 2016.
doi:10.1109/ICEECCOT.2016.7955203

6. Levanon, N., "Multifrequency complementary phase-coded radar signal," IEEE Proceedings on Radar, Sonar and Navigation, Vol. 147, No. 6, 276-284, 2000.
doi:10.1049/ip-rsn:20000734

7. Ellinger, J., Z. Zhang, M. W. Wu, and Zhiqiang, "Dual-use multi-carrier waveform for radar detection and communication," IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 3, 1265-1278, 2017.
doi:10.1109/TAES.2017.2780578

8. Y., Fu, Y. Li, Q. Huang, and K. Zhang, "Design and analysis of LFM/Barker RF stealth signal waveform," 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), 591-595, 2016.

9. Kumar, K. R. and P. R. Kumar, "Reducing the grating lobes and main lobe width for increasing range resolution using phase and frequency modulated codes," Title of paper, book, or conference proceedings Electrical, Electronics, and Optimization Techniques (ICEEOT) --- 2016, 1453-1457, 2016.
doi:10.1109/ICEEOT.2016.7754923

10. Xiong, G., X.-N. Yang, and H.-C. Zhao, "Pseudo-random code phase modulation and LFM combined pulse trains ranging system," 6th International Conference on ITS Telecommunication Proceedings, 148-151, 2006.

11. Ngwar, M. and J. Wright, "Phase-coded-linear-frequency-modulated waveform for low cost marine radar system," 2010 IEEE Radar Conference, 1144-1149, Washington D.C., 2010.

12. Seleym, A., "Complementary phase coded LFM waveform for SAR," Integrated Communications Navigation and Surveillance (ICNS) Conference, 4C3-1-4C3-5, 2016.

13. Zong, Z., J. Hu, and L. Zhu, "OPCDM-LFM waveform design for formation flying satellite radar system," IEEE CIE International Conference on Radar, 592-595, October 24-27, 2011.

14. Fu, J., G. Weim, and Q. Huang, "Barker coded excitation using LFM carrier for improving axial resolution in ultrasound imaging," Proceedings of 2013 ICME International Conference on Complex Medical Engineering, Beijing, China, 2013.

15. Richards, M. A., J. A. Scheer, and W. A. Holm, Principles of Modern Radar, SciTech Publishing Inc., Raleigh, 2010.
doi:10.1049/SBRA021E

16. Kumari, P., R. W. Heath, and S. A. Vorobyov, "Virtual pulse design for IEEE 802.11AD-based joint communication-radar," IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3315-3319, Calgary, 2018.

17. Fioranelli, F., S. Salous, and X. Raimundo, "Frequency-modulated interrupted continuous wave as wall removal technique in through-the-wall imaging," IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 10, 6272-6283, 2014.
doi:10.1109/TGRS.2013.2295835

18. Khomchuk, P., I. Stainvas, and I. Bilik, "Pedestrian motion direction estimation using simulated automotive MIMO radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 52, No. 3, 1132-1145, 2016.
doi:10.1109/TAES.2016.140682

19. Levanon, N. and B. Getz, "Comparison between linear FM and phase-coded CW radars," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 141, No. 4, 230-240, August 1994.
doi:10.1049/ip-rsn:19941233

20. Rihaczek, A. W. and R. M. Golden, "Range sidelobe suppression for barker codes," IEEE Transactions on Aerospace and Electronic Systems, Vol. AES-7, No. 6, 1087-1092, 1971.
doi:10.1109/TAES.1971.310209

21. Ciuonzo, D., A. D. Maio, G. Foglia, and M. Piezzo, "Intrapulse radar-embedded communications via multiobjective optimization," IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, No. 4, 2960-2974, 2015.
doi:10.1109/TAES.2015.140821

22. Ciuonzo, D., A. D. Maio, G. Foglia, and M. Piezzo, "Pareto-theory for enabling covert intrapulse radar-embedded communications," IEEE Radar Conference (RadarCon), 0292-0297, Arlington, VA, 2015.

23. Ciuonzo, D. and P. S. Rossi, "Noncolocated time-reversal MUSIC: High-SNR distribution of null spectrum," IEEE Signal Processing Letters, Vol. 24, No. 4, 397-401, 2017.
doi:10.1109/LSP.2017.2661246

24. Ciuonzo, D., V. Carotenuto, and A. D. Maio, "On multiple covariance equality testing with application to SAR change detection," IEEE Transactions on Signal Processing, Vol. 65, No. 19, 5078-5091, 2017.
doi:10.1109/TSP.2017.2712124

25. Cheng, X., A. Aubry, D. Ciuonzo, A. D. Maio, and X. Wang, "Robust waveform and filter bank design of polarimetric radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, No. 1, 370-384, 2017.
doi:10.1109/TAES.2017.2650619

26. U.S. Department of Commerce, National Telecommunication and Information Adminstration, Office of Spectrum Management, "United States frequency allocations --- The radio spectrum,", January 2016, [Online]. Available: https://www.ntia.doc.gov/files/ntia/publications/january 2016 spectrum wall chart.pdf., [Accessed January 11, 2017].

27. Pallavi, N., P. Anjaneyulu, P. B. Reddy, V.Mahendra, and R. Karthik, "Design and implementation of linear frequency modulated waveform using DDS and FPGA," 2017 International conference of Electronics, Communication and Aerospace Technology (ICECA), Vol. 2, 237-241, Coimbatore, India, 2017.

28. Ventura, J. F. I. and H. Russchenberg, "Improvement of the performance of FM-CW radar systems by using direct digital synthesizers: Comparison with voltage controlled oscillators," 2006 International Radar Symposium, 1-4, Krakow Poland, 2006.

29. Skolnik, M. I., "An introduction and overview of radar," Radar Handbook, 1.1-1.24, M. I. Skolnik, Ed., McGraw-Hill, New York, 2008.

30. Siddiq, K., R. J. Watson, S. R. Pennock, P. Avery, R. Poulton, and B. Dakin-Norris, "Phase noise analysis in FMCW radar systems," European Radar Conference (EuRAD), 501-504, Paris, 2015.
doi:10.1109/EuRAD.2015.7346347

31. Tierney, J., C. Rader, and B. Gold, "A digital frequency synthesizer," IEEE Transactions on Audio and Electroacoustics, Vol. 19, No. 1, 48-57, 1971.
doi:10.1109/TAU.1971.1162151

32. Vankka, J. and K. A. Halonen, Direct Digital Synthesizers: Theory Design and Applications, Springer-Verlag, New York, 2001.
doi:10.1007/978-1-4757-3395-2_6

33. Analog Devices, Inc. "Fundamentals of direct digital synthesis (DDS) (MT-085),", Analog Devices, Inc., Norwood, MA, 2009.

34. Andrews, G. V., C. T. M. Chang, J. D. Cayo, S. Sabin, W. A. White, and M. P. Harris, "Monolithic GaAs dual-channel digital chirp synthesiser chip," Electronics Letters, Vol. 27, No. 11, 905-906, May 23, 1991.
doi:10.1049/el:19910567

35. Scheiblhofer, S., S. Schuster, and A. Stelzer, "High-speed FMCW radar frequency synthesizer with DDS based linearization," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 5, 397-399, May 2007.
doi:10.1109/LMWC.2007.895732

36. Budge, M. and S. German, Basic Radar Analysis, Artech House, Norwood, MA, 2015.

37. Hovanessian, S. A., Radar System Design and Analysis, Artech House, Inc., Norwood, 1984.

38. Mahafza, B. R. and A. Z. Elsherbeni, MATLAB Simulations for Radar Systems Design, Chapman & Hall/CRC CRC Press LLC, Boca Raton, 2004.

39. Song, M., J. Lim, and S. Dong-Joon, "The velocity and range detection using the 2D-FFT scheme for automotive radars," 2014 4th IEEE International Conference on Network Infrastructure and Digital Content, 507-510, Beijing, 2014.
doi:10.1109/ICNIDC.2014.7000356

40. Eugin, H. and J. Lee, "Hardware architecture design and implementation for FMCW radar signal processing algorithm," Proceedings of the 2014 Conference on Design and Architectures for Signal and Image Processing, 1-6, Madrid, 2014.

41. Swerling, P., "Probability of detection for fluctuating targets," IRE Transactions Information Theory, Vol. 6, No. 2, 269-308, 1960.
doi:10.1109/TIT.1960.1057561