Vol. 82
Latest Volume
All Volumes
PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-09-25
Dielectric Slab Reflection/Transmission as a Self-Consistent Radiation Phenomenon
By
Progress In Electromagnetics Research B, Vol. 82, 31-48, 2018
Abstract
We revisit the standard electromagnetic problem wherein wave propagation within a uniform, lossless dielectric is interrupted by a dissipative slab of finite thickness. While such a problem is easily solved on the basis of interface field continuity, we proceed to treat it here under the viewpoint of radiative self-consistency, with effective current sources resident only within the slab interior and gauged by ohmic/polarization parameter comparisons against those of the reference, exterior medium. Radiative self-consistency finds its natural expression as an integral equation over the slab interior field which, once solved, permits a direct, fully constructive buildup, both up and down, of the reflected/transmitted field contributions, without any need for ascertaining such quantities implicitly via the enforcement of boundary conditions. The persistent cadence of solution steps in such integral-equation problems asserts itself here, too, in the sense that it leads, first, to an exact cancellation, left and right, of that interior, unknown field, and second, that it brings in still other contributions of a reference medium variety, of which it is required that they, and only they, balance the incoming excitation. Balancing of this latter sort provides indeed the linear conditions for slab field determination. The two-step solution pattern thus described may be regarded as a manifestation at some remove of Ewald-Oseen extinction, even though the analytic framework now on view differs fundamentally from proofs elsewhere available. We go on to solve the several balancing equations by direct, vector manipulation avoiding all recourse to large, unwieldy determinants, and then offer a partial confirmation by exhibiting a canonical, boundary value counterpart in the special case of perpendicular incidence. Following all of this, in an appendix, we allow the receptor, downstream half space to differ from that wherein the excitation had been launched and which continues to serve as the reference medium. Effective currents are now found not only within the slab proper, but also throughout an entire half space, necessitating a suitable generalization of the underlying integral equation, and a provision, during its solution, of cross-talk, both up and down, between slab and the half space now contributing as a radiation source. We provide in this appendix a fairly accelerated presentation of these generalized features, but with all logical details nevertheless fully displayed in plain view. The integral equation radiative self-consistency method is, to our way of thinking, physically far more satisfying than the prevailing method of scattered fields guessed as to their structure and then fixed by boundary conditions. Its analytic themes, moreover, are far, far more elegant.
Citation
Jan Alexander Grzesik, "Dielectric Slab Reflection/Transmission as a Self-Consistent Radiation Phenomenon," Progress In Electromagnetics Research B, Vol. 82, 31-48, 2018.
doi:10.2528/PIERB18062303
References

1. Grzesik, J., "Note on homogeneous and inhomogeneous integral equations in the theory of electromagnetic scattering by dielectric obstacles," Proceedings of the IEEE (Letters), Vol. 54, No. 12, 2028-2029, December 1966.
doi:10.1109/PROC.1966.5360

2. Grzesik, J., "Field matching through volume suppression," IEE Proceedings, Part H (Antennas and Optics), Vol. 127, No. 1, 20-26, February 1980.

3. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th Ed., edited by Alan Jeffrey and David Zwillinger, 741-742, Academic Press, San Diego, California, USA, 2007.

4. Born, M. and E. Wolf, Principles of Optics, 7th Expanded Ed., 105-115, Cambridge University Press, 2005.