Vol. 62
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-03-14
Split-Ring Resonator Arrays for Electromagnetic Energy Harvesting
By
Progress In Electromagnetics Research B, Vol. 62, 167-180, 2015
Abstract
By virtue of their ability to resonate at a wavelength much larger than the maximum dimension, Split-Ring Resonator (SRR) cells can be densely stacked to create energy harvesting arrays having per-unit-area power efficiency higher than a single SRR cell. While the concept of using metamaterial particles for electromagnetic energy harvesting had been demonstrated in our earlier work, the overall efficiency of an SRR array in comparison to classical antenna arrays is fundamental to the viability of this technology. In this work, we focus on a comparative study based on numerical full-wave simulations where an array of SRRs is compared to an array of microstrip antennas. We show that an SRR array can provide significant enhancement in power efficiency and bandwidth in comparison to the classical microstrip patch antenna. Experimental validation is provided showing SRR arrays can provide significant energy-absorption enhancement.
Citation
Thamer Almoneef, and Omar M. Ramahi, "Split-Ring Resonator Arrays for Electromagnetic Energy Harvesting," Progress In Electromagnetics Research B, Vol. 62, 167-180, 2015.
doi:10.2528/PIERB15012506
References

1. Brown, W. C., "The history of power transmission by radio waves," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 9, 1230-1242, 1984.
doi:10.1109/TMTT.1984.1132833

2. Curty, J., M. Declercq, C. Dehollain, and N. Joehl, Design and Optimization of Passive UHF RFID Systems, Springer Publishing Company, Incorporated, 2010.

3. Yagi, H. and S. Uda, "On the feasibility of power transmission by electric waves," Proceedings of the Third Pan-Pacific Science Congress, Vol. 2, 1305-1313, 1926.

4. "Electric light without current," Literary Digest, Vol. 112, 30, 1932.

5. Strassner, II, B. and K. Chang, "Rectifying antennas (rectennas)," Encyclopedia of RF and Microwave Engineering, 2005.

6. Erb, R., "Power from space — The tough questions: The 1995 Peter E. Glaser lecture," Acta Astronautica, Vol. 38, No. 48, 539-550, 1996, Benets of Space for Humanity, Online Available: http://www.sciencedirect.com/science/article/pii/0094576596823241.
doi:10.1016/0094-5765(96)82324-1

7. Glaser, P. E., "An overview of the solar power satellite option," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 6, 1230-1238, 1992.
doi:10.1109/22.141356

8. Brown, W., "Electronic and mechanical improvement of the receiving terminal of a free-space microwave power transmission system," NASA STI/Recon Technical Report N, Vol. 77, 31613, 1977.

9. McSpadden, J., "Rectifying and oscillating integrated antennas,", Ph.D. Dissertation, Texas A&M University, 1998.

10. Brown, W. and J. Triner, "Experimental thin-film, etched-circuit rectenna," 1982 IEEE MTT-S International Microwave Symposium Digest, 185-187, 1982.

11. Koert, P., J. Cha, and M. Machina, "35 and 94GHz rectifying antenna systems," SPS 91 — Power from Space, Vol. 1, 541-547, 1991.

12. Bharj, S., R. Camisa, S. Grober, F. Wozniak, and E. Pendleton, "High efficiency C-band 1000 element rectenna array for microwave powered applications," 1992 IEEE MTT-S International Microwave Symposium Digest, 301-303, 1992.
doi:10.1109/MWSYM.1992.187972

13. Ren, Y. and K. Chang, "5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 4, 1495-1502, 2006.
doi:10.1109/TMTT.2006.871362

14. Harouni, Z., L. Cirio, L. Osman, A. Gharsallah, and O. Picon, "A dual circularly polarized 2.45 GHz rectenna for wireless power transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 306-309, 2011.
doi:10.1109/LAWP.2011.2141973

15. Hagerty, J. and Z. Popovic, "An experimental and theoretical characterization of a broadband arbitrarily-polarized rectenna array," 2001 IEEE MTT-S International Microwave Symposium Digest, Vol. 3, 1855-1858, 2001.
doi:10.1109/MWSYM.2001.967269

16. Hagerty, J., F. Helmbrecht, W. McCalpin, R. Zane, and Z. Popovic, "Recycling ambient microwave energy with broad-band rectenna arrays," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, 1014-1024, 2004.
doi:10.1109/TMTT.2004.823585

17. Ramahi, O., T. Almoneef, M. Alshareef, and M. Boybay, "Metamaterial particles for electromagnetic energy harvesting," Applied Physics Letters, Vol. 101, No. 17, 173903, 2012.
doi:10.1063/1.4764054

18. Yoo, T. and K. Chang, "Theoretical and experimental development of 10 and 35GHz rectennas," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 6, 1259-1266, 1992.
doi:10.1109/22.141359

19. McSpadden, J., L. Fan, and K. Chang, "A high conversion efficiency 5.8GHz rectenna," 1997 IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 547-550, 1997.
doi:10.1109/MWSYM.1997.602852

20. Chin, C., Q. Xue, and C. Chan, "Design of a 5.8-GHz rectenna incorporating a new patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 175-178, 2005.
doi:10.1109/LAWP.2005.846434

21. Strassner, B. and K. Chang, "5.8-GHz circularly polarized rectifying antenna for wireless microwave power transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 8, 1870-1876, 2002.
doi:10.1109/TMTT.2002.801312

22. Monti, G., L. Tarricone, and M. Spartano, "X-band planar rectenna," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1116-1119, 2011.
doi:10.1109/LAWP.2011.2171029

23. Hawkes, A. M., A. R. Katko, and S. A. Cummer, "A microwave metamaterial with integrated power harvesting functionality," Applied Physics Letters, Vol. 103, No. 16, 2013, Online Available: http://scitation.aip.org/content/aip/journal/apl/103/16/10.1063/1.4824473.
doi:10.1063/1.4824473

24. Almoneef, T. and O. M. Ramahi, "A 3-dimensional stacked metamaterial arrays for electromagnetic energy harvesting," Progress In Electromagnetics Research, Vol. 146, 109-115, 2014.
doi:10.2528/PIER14031603

25. Yo, T., C. Lee, C. Hsu, and C. Luo, "Compact circularly polarized rectenna with unbalanced circular slots," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 882-886, 2008.
doi:10.1109/TAP.2008.916956

26. Heikkinen, J. and M. Kivikoski, "A novel dual-frequency circularly polarized rectenna," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 330-333, 2003.
doi:10.1109/LAWP.2004.824166

27. Solymar, L. and E. Shamonina, Waves in Metamaterials, Oxford University Press, USA, 2009.

28. Mei, Z., J. Bai, T. Niu, and T. Cui, "A half Maxwell fish-eye lens antenna based on gradient-index metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 398-401, 2012.
doi:10.1109/TAP.2011.2167914

29. Khan, M. and M. Mughal, "Design of tunable metamaterials by varying the height of rings of S-shaped resonator," IEEE Third International Conference on Electrical Engineering, ICEE’09, 1-4, 2009.

30. Aydin, K., I. Bulu, K. Guven, M. Kafesaki, C. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New Journal of Physics, Vol. 7, 168, 2005.
doi:10.1088/1367-2630/7/1/168

31. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, K. Alici, and E. Ozbay, "Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2865-2873, 2007.
doi:10.1109/TMTT.2007.909611

32. AlShareef, M. R. and O. M. Ramahi, "Electrically small resonators for energy harvesting in the infrared regime," Journal of Applied Physics, Vol. 114, No. 22, 2013, Online Available: http://scitation.aip.org/content/aip/journal/jap/114/22/10.1063/1.4846076.
doi:10.1063/1.4846076

33. Stutzman, W. L. and G. Thiele, Antenna Theory and Design, John Wiley, New York, 1981.

34. Lau, B. K. and Z. Ying, "Antenna design challenges and solutions for compact MIMO terminals," 2011 International Workshop on Antenna Technology (iWAT), 70-73, 2011.
doi:10.1109/IWAT.2011.5752391

35. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2012.

36. Storer, J. E., "Impedance of thin-wire loop antennas," Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, Vol. 75, No. 5, 606-619, Nov. 1956.
doi:10.1109/TCE.1956.6372437

37. Gorkunov, M., M. Lapine, E. Shamonina, and K. H. Ringhofer, "Effective magnetic properties of a composite material with circular conductive elements," Eur. Phys. J. B, Vol. 28, 263-269, 2002.
doi:10.1140/epjb/e2002-00228-4