1. Jackson, J. D., "Classical Electrodynamics," Wiley, 1975.
2. Landau, L. D. and E. M. Lifshitz, "Electrodynamics of Continuous Media,", 1984.
3. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937
4. Lee, B., I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, "Review on subwavelength confinement of light with plasmonics," J. Mod. Opt., Vol. 57, No. 16, 1479-1497, 2010.
doi:10.1080/09500340.2010.506985
5. Ahn, W., S. V. Boriskina, Y. Hong, and B. M. Reinhard, "Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices," Nano Lett., Vol. 12, 219-227, 2012.
doi:10.1021/nl203365y
6. Ruting, F., A. I. Fernandez-Domnguez, L. Martin-Moreno, and F. J. Garcia-Vidal, "Subwavelength chiral surface plasmons that carry tuneable orbital angular momentum," Phys. Rev. B, Vol. 86, 075437, 2012.
doi:10.1103/PhysRevB.86.075437
7. Tang, Y. and A. E. Cohen, "Optical chirality and its interaction with matter," Phys. Rev. Lett., Vol. 104, 163901, 2010.
doi:10.1103/PhysRevLett.104.163901
8. Hendry, E., T. Carpy, J. Johnston, M. PoplandR. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, "Ultrasensitive detection and characterization of biomolecules using superchiral fields," Nat. Nanotechnol., Vol. 5, 783-787, 2010.
doi:10.1038/nnano.2010.209
9. Hentschel, M., M. Schaferling, T. Weiss, N. Liu, and H. Giessen, "Three-dimensional chiral plasmonic oligomers," Nano Lett., Vol. 12, 2542-2547, 2012.
doi:10.1021/nl300769x
10. Gorodetski, Y., A. Drezet, C. Genet, and T. W. Ebbesen, "Generating far-field orbital angular momenta from near-field optical chirality," Phys. Rev. Lett., Vol. 110, 203906, 2013.
doi:10.1103/PhysRevLett.110.203906
11. Miroshnichenko, A. E., S. Plach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257-2298, 2010.
doi:10.1103/RevModPhys.82.2257
12. Luk'yanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Mater., Vol. 9, 707-715, 2010.
doi:10.1038/nmat2810
13. Gurevich, A. and G. Melkov, Magnetic Oscillations and Waves, CRC Press, 1996.
14. Kamenetskii, E. O., "Energy eigenstates of magnetostatic waves and oscillations," Phys. Rev. E, Vol. 63, 066612, 2001.
doi:10.1103/PhysRevE.63.066612
15. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Quantum confinement of magnetic-dipolar oscillations in ferrite discs," J. Phys.: Condens. Matter, Vol. 17, 2211-2231, 2005.
doi:10.1088/0953-8984/17/13/018
16. Kamenetskii, E. O., "Vortices and chirality of magnetostatic modes in quasi-2D ferrite disc particles," J. Phys. A: Math. Theor., Vol. 40, 6539-6559, 2007.
doi:10.1088/1751-8113/40/24/017
17. Kamenetskii, E. O., "Helical-mode magnetostatic resonances in small ferrite particles and singular metamaterials," J. Phys.: Condens. Matter, Vol. 22, 486005, 2010.
doi:10.1088/0953-8984/22/48/486005
18. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Manipulating microwaves with magnetic-dipolar-mode vortices," Phys. Rev. A, Vol. 81, 053823, 2010.
doi:10.1103/PhysRevA.81.053823
19. Kamenetskii, E. O., R. Joffe, and R. Shavit, "Coupled states of electromagnetic fields with magnetic-dipolar-mode vortices: MDM-vortex polaritons," Phys. Rev. A, Vol. 84, 023836, 2011.
doi:10.1103/PhysRevA.84.023836
20. Kamentskii, E. O., "Microwave magnetoelectric fields," arXiv:1111.4359, 2011.
21. Kamenetskii, E. O., R. Joffe, and R. Shavit, "Microwave magnetoelectric fields and their role in the matter-field interaction," Phys. Rev. E, Vol. 87, 023201, 2013.
doi:10.1103/PhysRevE.87.023201
22. Berezin, M., E. O. Kamenetskii, and R. Shavit, "Topological phase effects and path-dependent interference in microwave structures with magnetic-dipolar-mode ferrite particles," J. Opt., Vol. 14, 125602, 2012.
doi:10.1088/2040-8978/14/12/125602
23. Kamenetskii, E. O., G. Vaisman, and R. Shavit, "Fano resonances of microwave structures with embedded magneto-dipolar quantum dots," arXiv:1309.2792, 2013.
24. McDonald, K. T., "An electrostatic wave," arXiv:physics/0312025, 2003.
25. McDonald, K. T., "Magnetostatic spin waves," arXiv:physics/0312026, 2003.
26. Sondergaard, T. and S. Bozhevolnyi, "Slow-plasmon resonant nanostructures: Scattering and field enhancements," Phys. Rev. B, Vol. 75, 073402, 2007.
doi:10.1103/PhysRevB.75.073402
27. Pelton, M., J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser & Photon. Rev., Vol. 2, 136-159, 2008.
doi:10.1002/lpor.200810003
28. Stockman, M. I., S. V. Faleev, and D. J. Bergman, "Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?," Phys. Rev. Lett., Vol. 87, 167401, 2001.
doi:10.1103/PhysRevLett.87.167401
29. Li, K., M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an e±cient nanolens," Phys. Rev. Lett., Vol. 91, 227402, 2003.
doi:10.1103/PhysRevLett.91.227402
30. Bergman, D. J. and D. Stroud, "Theory of resonances in the electromagnetic scattering by macroscopic bodies," Phys. Rev. B, Vol. 22, 3527-3539, 1980.
doi:10.1103/PhysRevB.22.3527
31. Mayergoyz, I. D., D. R. Fredkin, and Z. Zhang, "Electrostatic (plasmon) resonances in nanoparticles," Phys. Rev. B, Vol. 72, 155412, 2005.
doi:10.1103/PhysRevB.72.155412
32. Brongersma, M. L., J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B, Vol. 62, R16356-R16359, 2000.
doi:10.1103/PhysRevB.62.R16356
33. Maier, S. M., P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B, Vol. 67, 205402, 2003.
doi:10.1103/PhysRevB.67.205402
34. Davis, T. J., K. C. Vernon, and D. E. Gomez, "Effect of retardation on localized surface plasmon resonances in a metallic nanorod," Opt. Express, Vol. 17, 23655-23663, 2009.
doi:10.1364/OE.17.023655
35. Wang, Z. B., B. S. Luk'yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flow around a small particle investigated by classical Mie theory ," Phys. Rev. B, Vol. 70, 035418, 2004.
doi:10.1103/PhysRevB.70.035418
36. Bashevoy, M. V., V. A. Fedotov, and N. I. Zheludev, "Optical whirlpool on an absorbing metallic nanoparticle," Opt. Express, Vol. 13, 8372-8379, 2005.
doi:10.1364/OPEX.13.008372
37. Tribelsky, M. I. and B. S. Luk'ynchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett., Vol. 97, 263902, 2006.
doi:10.1103/PhysRevLett.97.263902
38. Walker, L. R., "Magnetostatic modes in ferromagnetic resonance," Phys. Rev., Vol. 105, 390-399, 1957.
doi:10.1103/PhysRev.105.390
39. Dillon, Jr., J. F., "Magnetostatic modes in disks and rods," J. Appl. Phys., Vol. 31, 1605-1614, 1960.
doi:10.1063/1.1735901
40. Yukawa, T. and K. Abe, "FMR spectrum of magnetostatic waves in a normally magnetized YIG disk," J. Appl. Phys., Vol. 45, 3146-3153, 1974.
doi:10.1063/1.1663739
41. Kamenetskii, E. O., A. K. Saha, and I. Awai, "Interaction of magnetic-dipolar modes with microwave-cavity electromagnetic fields," Phys. Lett. A, Vol. 332, 303-309, 2004.
doi:10.1016/j.physleta.2004.09.067
42. Sigalov, M., E. O. Kamenetskii, and R. Shavit, "Eigen electric moments and magnetic-dipolar vortices in quasi-2D ferrite disks," Appl. Phys. B, Vol. 93, 339-343, 2008.
doi:10.1007/s00340-008-3168-2
43. Sigalov, M., E. O. Kamenetskii, and R. Shavit, "Electric self-inductance of quasi-two-dimensional magnetic-dipolar-mode ferrite disks," J. Appl. Phys., Vol. 104, 053901, 2008.
doi:10.1063/1.2973676
44. Kamenetskii, E. O., R. Shavit, and M. Sigalov, "Quantum wells based on magnetic-dipolar-mode oscillations in disk ferromagnetic particles," Europhys. Lett., Vol. 64, 730-736, 2003.
doi:10.1209/epl/i2003-00620-2
45. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley , 2004.
46. Sigalov, M. and Magnetic-dipolar, "Magnetic-dipolar and electromagnetic vortices in quasi-2D ferrite disks," J. Phys.: Condens. Matter, Vol. 21, 016003, 2009.
doi:10.1088/0953-8984/21/1/016003
47. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Tellegen particles and magnetoelectric metamaterials," J. Appl. Phys., Vol. 105, 013537, 2009.
doi:10.1063/1.3054298
48. Anlage, S. M., D. E. Steinhauer, B. J. Feenstra, C. P. Vlahacos, and F. C.Wellstood, "Near-field microwave microscopy of material properties," arXiv: cond-mat/0001075, 2000.
49. Rosner, B. T. and D. W. van der Weide, "High-frequency near-field microscopy," Rev. Sci. Instrum., Vol. 73, 2505-2525, 2002.
doi:10.1063/1.1482150
50. Joffe, R., E. O. Kamenetskii, and R. Shavit, "Novel microwave near-field sensors for material characterization, biology and nanotechnology," J. Appl. Phys., Vol. 113, 063912, 2013.
doi:10.1063/1.4791713
51. Carney, P. S., B. Deutch, A. A. Govyadinov, and R. Hillenbrand, "Phase in nanooptics," ACS NANO, Vol. 6, 8-12, 2012.
doi:10.1021/nn205008y
52. Wu, C., A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, and G. Shvets, "Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers," Nature Mater., Vol. 11, 69-75, 2012.
53. Andrews, D. L., Structured Light and Its Applications: An Introduction to Phase-structured Beams and Nanoscale Optical Forces, 2008.
54. Johnson, C., C. M. Marcus, M. P. Hanson, and A. C. Gossard, "Coulomb-modified Fano resonance in a one-lead quantum dot," Phys. Rev. Lett., Vol. 93, 106803, 2004.
doi:10.1103/PhysRevLett.93.106803