Vol. 56
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-10-24
Magnetic-Dipolar-Mode Oscillations for Near- and Far-Field Manipulation of Microwave Radiation (Invited Paper)
By
Progress In Electromagnetics Research B, Vol. 56, 51-88, 2013
Abstract
There has been a surge of interest in the subwavelength confinement effects of the electromagnetic fields. Based on these effects, one can obtain new behaviors of the near- and farfield radiation. It is well known that in optics, the subwavelength confinement can be obtained due to surface-plasmon (or electrostatic) oscillations in metal structures. This paper is a review of recent studies on the subwavelength confinement in microwaves due to magnetic-dipolarmode (MDM) [or magnetostatic (MS)] oscillations in small ferrite samples. MDM oscillations in a mesoscopic ferrite-disk particle are quantized oscillations, which are characterized by energy eigenstates. The field structures are distinguished by power-flow vortices and non-zero helicity. Also in vacuum, the near fields originated from MDM particles are designated by topologically distinctive power-flow vortices, non-zero helicity, and a torsion degree of freedom. To differentiate such field structures from regular electromagnetic (EM) field structures, we term them as magnetoelectric (ME) fields. In a pattern of the microwave field scattered by a MDM ferrite disk and MDM-disk arrays, one can observe rotating topological-phase dislocations. This opens a perspective for creation of engineered electromagnetic fields with unique symmetry properties. In the near-field applications, we propose novel microwave sensors for material characterization, biology, and nanotechnology. Strong energy concentration and unique topological structures of the near fields originated from the MDM resonators allow effective measuring chiral properties of materials in microwaves. Generating far-field orbital angular momenta from near-field microwave chirality of MDM structures can be a subject of a great interest. Realization of such vortex generators opens perspective for novel microwave systems with topological-phase modulation.
Citation
Eugene O. Kamenetskii, Roman Joffe, Maksim Berezin, Guy Vaisman, and Reuven Shavit, "Magnetic-Dipolar-Mode Oscillations for Near- and Far-Field Manipulation of Microwave Radiation (Invited Paper)," Progress In Electromagnetics Research B, Vol. 56, 51-88, 2013.
doi:10.2528/PIERB13092206
References

1. Jackson, J. D., "Classical Electrodynamics," Wiley, 1975.

2. Landau, L. D. and E. M. Lifshitz, "Electrodynamics of Continuous Media,", 1984.

3. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937

4. Lee, B., I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, "Review on subwavelength confinement of light with plasmonics," J. Mod. Opt., Vol. 57, No. 16, 1479-1497, 2010.
doi:10.1080/09500340.2010.506985

5. Ahn, W., S. V. Boriskina, Y. Hong, and B. M. Reinhard, "Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices," Nano Lett., Vol. 12, 219-227, 2012.
doi:10.1021/nl203365y

6. Ruting, F., A. I. Fernandez-Domnguez, L. Martin-Moreno, and F. J. Garcia-Vidal, "Subwavelength chiral surface plasmons that carry tuneable orbital angular momentum," Phys. Rev. B, Vol. 86, 075437, 2012.
doi:10.1103/PhysRevB.86.075437

7. Tang, Y. and A. E. Cohen, "Optical chirality and its interaction with matter," Phys. Rev. Lett., Vol. 104, 163901, 2010.
doi:10.1103/PhysRevLett.104.163901

8. Hendry, E., T. Carpy, J. Johnston, M. PoplandR. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, "Ultrasensitive detection and characterization of biomolecules using superchiral fields," Nat. Nanotechnol., Vol. 5, 783-787, 2010.
doi:10.1038/nnano.2010.209

9. Hentschel, M., M. Schaferling, T. Weiss, N. Liu, and H. Giessen, "Three-dimensional chiral plasmonic oligomers," Nano Lett., Vol. 12, 2542-2547, 2012.
doi:10.1021/nl300769x

10. Gorodetski, Y., A. Drezet, C. Genet, and T. W. Ebbesen, "Generating far-field orbital angular momenta from near-field optical chirality," Phys. Rev. Lett., Vol. 110, 203906, 2013.
doi:10.1103/PhysRevLett.110.203906

11. Miroshnichenko, A. E., S. Plach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257-2298, 2010.
doi:10.1103/RevModPhys.82.2257

12. Luk'yanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Mater., Vol. 9, 707-715, 2010.
doi:10.1038/nmat2810

13. Gurevich, A. and G. Melkov, Magnetic Oscillations and Waves, CRC Press, 1996.

14. Kamenetskii, E. O., "Energy eigenstates of magnetostatic waves and oscillations," Phys. Rev. E, Vol. 63, 066612, 2001.
doi:10.1103/PhysRevE.63.066612

15. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Quantum confinement of magnetic-dipolar oscillations in ferrite discs," J. Phys.: Condens. Matter, Vol. 17, 2211-2231, 2005.
doi:10.1088/0953-8984/17/13/018

16. Kamenetskii, E. O., "Vortices and chirality of magnetostatic modes in quasi-2D ferrite disc particles," J. Phys. A: Math. Theor., Vol. 40, 6539-6559, 2007.
doi:10.1088/1751-8113/40/24/017

17. Kamenetskii, E. O., "Helical-mode magnetostatic resonances in small ferrite particles and singular metamaterials," J. Phys.: Condens. Matter, Vol. 22, 486005, 2010.
doi:10.1088/0953-8984/22/48/486005

18. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Manipulating microwaves with magnetic-dipolar-mode vortices," Phys. Rev. A, Vol. 81, 053823, 2010.
doi:10.1103/PhysRevA.81.053823

19. Kamenetskii, E. O., R. Joffe, and R. Shavit, "Coupled states of electromagnetic fields with magnetic-dipolar-mode vortices: MDM-vortex polaritons," Phys. Rev. A, Vol. 84, 023836, 2011.
doi:10.1103/PhysRevA.84.023836

20. Kamentskii, E. O., "Microwave magnetoelectric fields," arXiv:1111.4359, 2011.

21. Kamenetskii, E. O., R. Joffe, and R. Shavit, "Microwave magnetoelectric fields and their role in the matter-field interaction," Phys. Rev. E, Vol. 87, 023201, 2013.
doi:10.1103/PhysRevE.87.023201

22. Berezin, M., E. O. Kamenetskii, and R. Shavit, "Topological phase effects and path-dependent interference in microwave structures with magnetic-dipolar-mode ferrite particles," J. Opt., Vol. 14, 125602, 2012.
doi:10.1088/2040-8978/14/12/125602

23. Kamenetskii, E. O., G. Vaisman, and R. Shavit, "Fano resonances of microwave structures with embedded magneto-dipolar quantum dots," arXiv:1309.2792, 2013.

24. McDonald, K. T., "An electrostatic wave," arXiv:physics/0312025, 2003.

25. McDonald, K. T., "Magnetostatic spin waves," arXiv:physics/0312026, 2003.

26. Sondergaard, T. and S. Bozhevolnyi, "Slow-plasmon resonant nanostructures: Scattering and field enhancements," Phys. Rev. B, Vol. 75, 073402, 2007.
doi:10.1103/PhysRevB.75.073402

27. Pelton, M., J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser & Photon. Rev., Vol. 2, 136-159, 2008.
doi:10.1002/lpor.200810003

28. Stockman, M. I., S. V. Faleev, and D. J. Bergman, "Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?," Phys. Rev. Lett., Vol. 87, 167401, 2001.
doi:10.1103/PhysRevLett.87.167401

29. Li, K., M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an e±cient nanolens," Phys. Rev. Lett., Vol. 91, 227402, 2003.
doi:10.1103/PhysRevLett.91.227402

30. Bergman, D. J. and D. Stroud, "Theory of resonances in the electromagnetic scattering by macroscopic bodies," Phys. Rev. B, Vol. 22, 3527-3539, 1980.
doi:10.1103/PhysRevB.22.3527

31. Mayergoyz, I. D., D. R. Fredkin, and Z. Zhang, "Electrostatic (plasmon) resonances in nanoparticles," Phys. Rev. B, Vol. 72, 155412, 2005.
doi:10.1103/PhysRevB.72.155412

32. Brongersma, M. L., J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B, Vol. 62, R16356-R16359, 2000.
doi:10.1103/PhysRevB.62.R16356

33. Maier, S. M., P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B, Vol. 67, 205402, 2003.
doi:10.1103/PhysRevB.67.205402

34. Davis, T. J., K. C. Vernon, and D. E. Gomez, "Effect of retardation on localized surface plasmon resonances in a metallic nanorod," Opt. Express, Vol. 17, 23655-23663, 2009.
doi:10.1364/OE.17.023655

35. Wang, Z. B., B. S. Luk'yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flow around a small particle investigated by classical Mie theory ," Phys. Rev. B, Vol. 70, 035418, 2004.
doi:10.1103/PhysRevB.70.035418

36. Bashevoy, M. V., V. A. Fedotov, and N. I. Zheludev, "Optical whirlpool on an absorbing metallic nanoparticle," Opt. Express, Vol. 13, 8372-8379, 2005.
doi:10.1364/OPEX.13.008372

37. Tribelsky, M. I. and B. S. Luk'ynchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett., Vol. 97, 263902, 2006.
doi:10.1103/PhysRevLett.97.263902

38. Walker, L. R., "Magnetostatic modes in ferromagnetic resonance," Phys. Rev., Vol. 105, 390-399, 1957.
doi:10.1103/PhysRev.105.390

39. Dillon, Jr., J. F., "Magnetostatic modes in disks and rods," J. Appl. Phys., Vol. 31, 1605-1614, 1960.
doi:10.1063/1.1735901

40. Yukawa, T. and K. Abe, "FMR spectrum of magnetostatic waves in a normally magnetized YIG disk," J. Appl. Phys., Vol. 45, 3146-3153, 1974.
doi:10.1063/1.1663739

41. Kamenetskii, E. O., A. K. Saha, and I. Awai, "Interaction of magnetic-dipolar modes with microwave-cavity electromagnetic fields," Phys. Lett. A, Vol. 332, 303-309, 2004.
doi:10.1016/j.physleta.2004.09.067

42. Sigalov, M., E. O. Kamenetskii, and R. Shavit, "Eigen electric moments and magnetic-dipolar vortices in quasi-2D ferrite disks," Appl. Phys. B, Vol. 93, 339-343, 2008.
doi:10.1007/s00340-008-3168-2

43. Sigalov, M., E. O. Kamenetskii, and R. Shavit, "Electric self-inductance of quasi-two-dimensional magnetic-dipolar-mode ferrite disks," J. Appl. Phys., Vol. 104, 053901, 2008.
doi:10.1063/1.2973676

44. Kamenetskii, E. O., R. Shavit, and M. Sigalov, "Quantum wells based on magnetic-dipolar-mode oscillations in disk ferromagnetic particles," Europhys. Lett., Vol. 64, 730-736, 2003.
doi:10.1209/epl/i2003-00620-2

45. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley , 2004.

46. Sigalov, M. and Magnetic-dipolar, "Magnetic-dipolar and electromagnetic vortices in quasi-2D ferrite disks," J. Phys.: Condens. Matter, Vol. 21, 016003, 2009.
doi:10.1088/0953-8984/21/1/016003

47. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Tellegen particles and magnetoelectric metamaterials," J. Appl. Phys., Vol. 105, 013537, 2009.
doi:10.1063/1.3054298

48. Anlage, S. M., D. E. Steinhauer, B. J. Feenstra, C. P. Vlahacos, and F. C.Wellstood, "Near-field microwave microscopy of material properties," arXiv: cond-mat/0001075, 2000.

49. Rosner, B. T. and D. W. van der Weide, "High-frequency near-field microscopy," Rev. Sci. Instrum., Vol. 73, 2505-2525, 2002.
doi:10.1063/1.1482150

50. Joffe, R., E. O. Kamenetskii, and R. Shavit, "Novel microwave near-field sensors for material characterization, biology and nanotechnology," J. Appl. Phys., Vol. 113, 063912, 2013.
doi:10.1063/1.4791713

51. Carney, P. S., B. Deutch, A. A. Govyadinov, and R. Hillenbrand, "Phase in nanooptics," ACS NANO, Vol. 6, 8-12, 2012.
doi:10.1021/nn205008y

52. Wu, C., A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, and G. Shvets, "Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers," Nature Mater., Vol. 11, 69-75, 2012.

53. Andrews, D. L., Structured Light and Its Applications: An Introduction to Phase-structured Beams and Nanoscale Optical Forces, 2008.

54. Johnson, C., C. M. Marcus, M. P. Hanson, and A. C. Gossard, "Coulomb-modified Fano resonance in a one-lead quantum dot," Phys. Rev. Lett., Vol. 93, 106803, 2004.
doi:10.1103/PhysRevLett.93.106803