Vol. 56
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-10-25
Comparison and Optimization of Dispersion, and Losses of Planar Waveguides on Benzocyclobutene (Bcb) at THz Frequencies: Coplanar Waveguide (CPW), Microstrip, Stripline and Slotline
By
Progress In Electromagnetics Research B, Vol. 56, 161-183, 2013
Abstract
This paper proposes an investigation in the terahertz (THz) frequency range of the dispersion and an individual quantitative treatment of the losses of the most classical microwave waveguides (coplanar, slotline, microstrip and stripline) numerically led in three dimensions (3D). An original strategy has been used to quantify radiation losses associated with leaky modes. A very low THz permittivity polymer (benzocyclobutene (BCB)) was used as a very convenient substrate to be easily grafted as a THz environment of integrated passive or/and active devices. Direct comparisons of the losses and the dispersion have been performed following two criteria: a constant characteristic impedance Zc fixed at 100 Ω and a constant effective width Weff fixed at 30 μm. The best waveguides are microstrip (αT= 2.52 dB/mm for Zc= 100 Ω and for W/H=35/50 μm (with W the strip width and H the substrate height) and αT =2.29 dB/mm for Weff = 30 μm at 1 THz with H = 30 μm) and stripline (with quasi-null radiation losses and the best quality factor QT= 63 for Zc = 100 Ω). The large dispersion and radiation losses of the slotline (SL) can be reduced with a thick BCB encapsulation to enhance the THz signal. The coplanar waveguide (CPW) remains in a medium position. Besides the parasitic mode (SL) and low QT problems due to mainly ohmic losses, its major advantage is its planar geometry allowing to an easy circuit integration with THz sources, amplifiers and detectors based on semiconductor. Consequently, these THz studies on BCB microwave standard waveguides open to various perspectives to carry out a broad panel of integrated THz circuits.
Citation
Lei Cao, Anne-Sophie Grimault-Jacquin, and Frederic Aniel, "Comparison and Optimization of Dispersion, and Losses of Planar Waveguides on Benzocyclobutene (Bcb) at THz Frequencies: Coplanar Waveguide (CPW), Microstrip, Stripline and Slotline," Progress In Electromagnetics Research B, Vol. 56, 161-183, 2013.
doi:10.2528/PIERB13072603
References

1. McGowan, R. W., G. Gallot, and D. Grischkowsky, "Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides," Optics Lett., Vol. 24, No. 20, 1431-1433, 1999.
doi:10.1364/OL.24.001431

2. Gallot, G., S. P. Jamison, R. W. McGowan, and D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Am. B, Vol. 17, No. 5, 851-863, 2000.
doi:10.1364/JOSAB.17.000851

3. Mendis, R. and D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Optics Express, Vol. 26, No. 11, 846-848, 2001.

4. Hidaka , T. and Ferroelectric PVDF cladding ter-, "Ferroelectric PVDF cladding terahertz waveguide," Proc. SPIE 5135, Optical Information, Data Processing and Storage, and Laser Communication Technologies, 70-77, 2003.
doi:10.1117/12.518073

5. Harrington, J., Harrington, J., R. George, P. Pederson, and E. Mueller, "Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation," Optics Express, Vol. 12, 5263-5268, 2004.
doi:10.1364/OPEX.12.005263

6. Hou, Y., F. Fan, et al. "Highly birefringent polymer terahertz fiber with honeycomb cladding," Optik, Vol. 124, 3095-3098, 2013.
doi:10.1016/j.ijleo.2012.09.040

7. Byrne, M. B., J. Cunningham, et al. "Terahertz vibrational absorption spectroscopy using microstrip-line waveguides," Appl. Phys. Lett., Vol. 93, 182904, 2008.
doi:10.1063/1.3013349

8. Byrne, C. M., P. Upadhya, M. Lachab, E. H. Linfield, and A. G. Davies, "Terahertz evanescent field microscopy of dielectric materials using on-chip waveguides," Appl. Phys. Lett., Vol. 92, 032903, 2008.

9. Kasai, S., A. Tanabashi, K. Kajiki, et al. "Micro strip line-based on-chip terahertz integrated devices for high sensitivity biosensors," Appl. Phys. Express, Vol. 2, 062401, 2009.
doi:10.1143/APEX.2.062401

10. Frankel, M. Y., S. Gupta, J. A. Valdmanis, and G. A. Mourou, "Terahertz attenuation and dispersion characteristics of coplanar transmission lines," IEEE Trans. Microw. Theory Techn., Vol. 39, No. 6, 910-916, 1991.
doi:10.1109/22.81658

11. Lok, L. B., C.-J. Hwang, H. M.-H. Chong, K. Elgaid, and I. G. Thayne, "Measurement and modeling of CPW transmission lines and power dividers on electrically thick GaAs substrate to 220 GHz," Proc. IRMMW --- THz, 1-2, 2008.

12. Grimault-Jacquin, A.-S., B. Tissafi, E. Perret, and F. Aniel, "Considering to minimize losses in terahertz coplanar waveguide on indium phosphide," Microw. and Optical Techn. Lett., Vol. 54, No. 1, 213-219, 2012.
doi:10.1002/mop.26448

13. Cheng, H., J. F. Whitaker, T. M. Weller, and L. P. B. Katehi, "Terahertz-bandwidth pulse propagation on a coplanar stripline fabricated on a thin membrane," IEEE Microw. Guided Wave Lett., Vol. 4, No. 3, 89-91, 1994.
doi:10.1109/75.275590

14. Kadoya, Y., M. Onuma, S. Yanagi, T. Ohkubo, N. Sato, and J. Kitagawa, "THz wave propagation on strip lines: Devices, properties, and applications," Radioeng., Vol. 17, No. 2, 48-55, 2008.

15. Wachter, M., M. Nagel, and H. Kurz, "Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission," Appl. Phys. Lett., Vol. 90, 061111, 2007.
doi:10.1063/1.2472544

16. Pahlevaninezhad, H., B. Heshmat, and T. E. Darcie, "Effcient terahertz slot-line waveguides," Opt. Express, Vol. 19, No. 26, B41-B55, 2011.
doi:10.1364/OE.19.000B47

17. Akalin, T., A. Treizebr, and B. Bocquet, "Single-wire transmission lines at terahertz frequencies," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 6, 2762-2767, 2006.
doi:10.1109/TMTT.2006.874890

18. Perret, E., N. Zerounian, S. David, and F. Aniel, "Complex permittivity characterization of benzocyclobutene for terahertz applications," Microelectron. Eng., Vol. 85, 2276-2281, 2008.
doi:10.1016/j.mee.2008.07.008

19. Schwdiauer, E., G. Neugschwandtner, S. Bauer-Gogonea, S. Bauer, and W. Wirges, "Low dielectric constant cross linking polymer: Film electrets with excellent charge stability," Appl. Phys. Lett., Vol. 75, 3998-4000, 1999.
doi:10.1063/1.125518

20. Schnieder, F. and W. Heinrich, "Thin-film microstrip lines and coplanar waveguides on semiconductor substrates for sub-mm wave frequencies," Frequenz, Vol. 59, No. 5--6, 1-4, 2005.

21. Wen, C. P., "Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications," IEEE Trans. Microwave Theory Tech., Vol. 17, 1087-1090, 1969.
doi:10.1109/TMTT.1969.1127105

22. Maloratsky, L., "RF and Microwave and Integrated Circuits: Passive Components and Control Devices," Elsevier, 2004.
doi:ISBN: 9780080492056

23. Lee, H., W. Kim, J. Lee, and J. Kim, "Suppression of coupled-slotline mode on CPW Using air-bridges measured by picosecond photoconductive sampling," IEEE Microw. Guided Wave Lett., Vol. 9, No. 7, 265-267, 1999.
doi:10.1109/75.774141

24. Jackson, R. W., "Considering in the use of coplanar waveguide for millimeter-wave integrated circuits," IEEE Trans. Microw. Theory Techn., Vol. 34, 1450-1456, 1986.
doi:10.1109/TMTT.1986.1133562

25. Cohn, S. B., "lot-line on a dielectric substrate," IEEE Trans. on Microwave Theory Tech., Vol. 17, 768-778, 1969.
doi:10.1109/TMTT.1969.1127058

26. Episkopou, E., S. Papantonis, W. Otter, and S. Lucyszyn, "De¯ning material parameters in commercial EM solvers for arbitrary metal based THz structures," IEEE Trans. on THz Science and Tech., Vol. 2, 513524, 2012.

27. Hsu, H. P., "On the general relation between alfa and Q," IEEE ransactions on Microw. Theory and Techniques, Vol. 11, No. 4, 258, 1963.
doi:10.1109/TMTT.1963.1125652

28. Collinm, R. E., "Field Theory of Guided Waves," McGraw-Hill, 1960.

29. Rutledge, D. B., D. P. Neikirk, and D. P. Kasilingam, "Integrated circuit antennas," Infrared and Millimeter Waves, Academic Press, Vol. 10, 1983.

30. Berini, P., "Plasmon-polariton waves guided by thin lossy metal ¯lms of ¯nite width: Bound modes of symmetric structures," Phys. Rev. B, Vol. 61, 10484-10503, 2000.
doi:10.1103/PhysRevB.61.10484

31. Grischkowsky, D., I. N. Duling III, J. C. Chen, and C. C. Chi, "Electromagnetic shock waves from transmission lines," Phys. Rev. Lett., Vol. 59, No. 15, 1663-1666, 1987.
doi:10.1103/PhysRevLett.59.1663

32. Jelley, J. V., Cerenkov Radiation and Its Applications, Pergamon Press, 1958.
doi:ISBN: 0-08-013127-1

33. Ke, J.-Y. and C. H. Chen, "The coplanar waveguides with finite metal thickness and conductivity," IEEE MTT Digest, 1681-1684, 1994.

34. Gupta, K. C., R. Garg, R. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, 2nd Ed., Artech House, 1996.
doi:ISBN: 0-89006-766-X

35. Peytavit, E., C. Donche, S. Lepilliet, G. Ducournau, and J.-F. Lampin, "Thin-¯lm transmission lines using cyclic olefin copolymer for millimeter-wave and terahertz integrated circuits," Electron. Lett., Vol. 47, No. 7, 2011.
doi:10.1049/el.2011.0369

36. Williams, D. F., "A prescription for sub-millimeter-wave transistor characterization," IEEE Trans. on THz Science and Technol., Vol. 3, No. 4, 433-439, 2013.
doi:10.1109/TTHZ.2013.2255332