Vol. 43
Latest Volume
All Volumes
PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-08-09
Broadband Material Characterization Using Traveling-Wave Whispering-Gallery-Mode Dielectric Resonators
By
Progress In Electromagnetics Research B, Vol. 43, 35-52, 2012
Abstract
A new technique for broadband material characterization, using a whispering-gallery-mode (WGM) resonator, is proposed. The resonant perturbation method is applied for the measurement of both the dielectric constant and loss tangent of various types of materials and over a wide frequency band. A comprehensive study on the reliability of using such technique, via simulations and measurements, is conducted as well. The feasibility of this device in sensing small variations of the dielectric properties of the material is investigated. Furthermore, the geometry of the resonator is slightly modified to fit liquid materials as well. This can be a promising solution for sensing human-body tissues or liquids such as blood or urine due to the sensitive nature of these resonators. The experimental setup is successfully utilized to measure the dielectric constant of a water droplet as a liquid sample as well as different material samples of arbitrary shapes and dielectric properties. The measurements are performed over the whole X- and K-bands where the obtained results are with a maximum deviation of only 3.3% for solids and 4.5% for liquids.
Citation
Mohamed Kheir, Hany Fathy Hammad, and Abbas Omar, "Broadband Material Characterization Using Traveling-Wave Whispering-Gallery-Mode Dielectric Resonators," Progress In Electromagnetics Research B, Vol. 43, 35-52, 2012.
doi:10.2528/PIERB12070508
References

1. Baker-Jarvis, J., R. G. Geyer, J. H. Grosvenor, Jr., M. D. Janezic, C. A. Jones, B. Riddle, C. M. Weil, and J. Krupka, "Dielectric characterization of low-loss materials: A comparison of techniques," IEEE Trans. on Dielectrics and Electrical Insulation, Vol. 5, No. 4, 571-577, Aug. 1998.
doi:10.1109/94.708274

2. Williams, T., M. A. Stuchly, and P. Saville, "Modified transmission-reflection method for measuring constitutive parameters of thin flexible high-loss materials," IEEE Trans. on Microwave Theory and Tech., Vol. 51, No. 5, 1560-1566 , May 2003.
doi:10.1109/TMTT.2003.810139

3. Ocera, A., M. Dionigi, E. Fratticcioli, and R. Sorrentino, "A novel technique for A complex permittivity measurement based on a planar four-port device," IEEE Trans. on Microwave Theory and Tech., Vol. 54, No. 6, 2568-2575, Jun. 2006.
doi:10.1109/TMTT.2006.872914

4. Kheir, M. S., H. F. Hammad, and A. Omar, "Measurement of the dielectric constant of liquids using a hybrid cavity-ring resonator," PIERS Proceedings, 566-569, Cambridge, USA, Jul. 2008.

5. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics: Measurement and Material Characterization, John Wiley & Sons Inc., 2004.

6. Cros, D. and P. Guillon, "Whispering gallery dielectric resonator modes for w-band devices," IEEE Trans. on Microwave Theory and Tech., Vol. 38, No. 11, 1667-1674, Nov. 1990.
doi:10.1109/22.60014

7. Jiao, X. H., P. Guillon, L. A. Bermudez, and P. Auxemery, "Whispering-gallery modes of dielectric structures: Applications to millimeter-wave bandstop filters," IEEE Trans. on Microwave Theory and Tech., Vol. 35, No. 12, 1169-1175, Dec. 1987.
doi:10.1109/TMTT.1987.1133834

8. Neshat, M., S. Gigoyan, D. Saeedkia, and S. Safavi-Naeini, "Travelling-wave whispering gallery resonance sensor in millimetre-wave range," Electronics Letters, Vol. 44, No. 17, 1020-1022, Aug. 2008.
doi:10.1049/el:20081445

9. Krupka, J., K. Derzakowski, A. Abramowicz, M. E. Tobar, and R. G. Geyer, "Use of whispering-gallery modes for complex permittivity determinations of ultra-low-loss dielectric materials," IEEE Trans. on Microwave Theory and Tech., Vol. 47, No. 6, 752-759, Jun. 1999.
doi:10.1109/22.769347

10. Krupka, J., D. Mouneyrac, J. G. Hartnett, and M. E. Tobar, "Use of whispering-gallery modes and quasi-TE0np modes for broadband characterization of bulk gallium arsenide and gallium phosphide samples," IEEE Trans. on Microwave Theory and Tech., Vol. 56, No. 5, 1201-1206, May 2008.
doi:10.1109/TMTT.2008.921652

11. Shaforosat, E. N., N. Klein, S. A. Vitusevich, A. Offenhausser, and A. A. Barannik, "Nanoliter liquid characterization by open whispering-gallery mode dielectric resonator at millimeter wave frequencies," Journal of Applied Physics, Vol. 104, No. 7, 1-7, Oct. 2008.

12. Shaforosat, E. N., N. Klein, S. A. Vitusevich, A. A. Barannik, and N. T. Cherpak, "High sensitivity microwave characterization of organic molecule solutions of nanoliter volume," Applied Physics Letters, Vol. 94, No. 11, 1-3, Mar. 2009.

13. Kheir, M. S., H. F. Hammad, and A. Omar, "Non-destructive broadband material characterization over the K-band using whispering-gallery-mode resonators," Proceedings of the 27th Conference on Precision Electromagnetic Measurements (CPEM2010), 285-286, Daejeon, Korea, Jun. 2010.

14. Chen, L., C. K. Ong, and B. T. G. Tan, "Amendment of cavity perturbation method for permittivity measurement of extremely low-loss dielectrics," IEEE Trans. on Instrumentation and Measurement, Vol. 48, No. 6, 1031-1037, Dec. 1999.
doi:10.1109/19.816109

15. Kraszewski, A. W. and S. O. Nelson, "Observations on resonant cavity perturbation by dielectric objects," IEEE Trans. on Microwave Theory and Tech., Vol. 40, No. 1, 151-155, Jan. 1992.
doi:10.1109/22.108334

16. Khanna, A. and Y. Garault, "Determination of loaded, unloaded, and external quality factors of a dielectric resonator coupled to a microstrip line," IEEE Trans. on Microwave Theory and Tech., Vol. 31, No. 3, 261-264, Mar. 1983.
doi:10.1109/TMTT.1983.1131473

17. Kajfez, D. and P. Guillon, electric Resonators, Artech House, Norwood, MA, 1986.

18. Pozar, D. M., Microwave Engineering, 2nd Edition, John Wiley & Sons Inc., 1998.

19. , , , CST Microwave Studio, 2009, http://www.cst.com.

20. Wilkes, C. E., C. A. Daniels, and J. W. Summers, PVC Handbook, Hanser Publications, 2005.
doi:10.1109/TIM.2011.2122170

21. , , , Cuming Microwave Corp., http://www.cumingmw.com.

22. Kheir, M. S., H. F. Hammad, and A. Omar, "Graphical representation and evaluation of attenuation and coupling parameters of whispering-gallery-mode resonators," IEEE Trans. on Instrumentation and Measurement, Vol. 60, No. 8, 2942-2950, Aug. 2011.