Vol. 40
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-04-18
Permittivity Measurements of Biological Samples by an Open-Ended Coaxial Line
By
Progress In Electromagnetics Research B, Vol. 40, 159-183, 2012
Abstract
We previously reported on the complex permittivity and dc conductivity of waste-activated sludge. The measurements, spanning a frequency range of 3 MHz to 40 GHz, were made using an open-ended coaxial transmission line. Although this technique is well established in the literature, we found that it was necessary to combine methods from several papers to use the open-ended coaxial probe to reliably characterize biological samples having a high dc conductivity. Here, we provide a set of detailed and practical guidelines that can be used to determine the permittivity and conductivity of biological samples over a broad frequency range. Due to the electrode polarization effect, low frequency measurements of conducting samples require corrections to extract the intrinsic electrical properties. We describe one practical correction scheme and verify its reliability using a control sample.
Citation
Jake S. Bobowski, and Thomas Johnson, "Permittivity Measurements of Biological Samples by an Open-Ended Coaxial Line," Progress In Electromagnetics Research B, Vol. 40, 159-183, 2012.
doi:10.2528/PIERB12022906
References

1. Stuchly, M. A., T. W. Athey, G. M. Samaras, and G. E. Taylor, "Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: Part II --- Experimental results," IEEE Trans. Microwave Theor. Techn., Vol. 30, No. 1, 87-92, 1982.
doi:10.1109/TMTT.1982.1131022

2. Foster, K. R. and J. L. Schepps, "Dielectric properties of tumor and normal tissues at radio through microwave frequencies," J. Microwave Power, Vol. 16, No. 2, 107-119, 1981.

3. Bao, J.-Z., M. L. Swicord, and C. C. Davis, "Microwave dielectric characterization of binary mixtures of water, methanol, and ehtanol," J. Chem. Phys., Vol. 104, No. 12, 4441-4450, 1996.
doi:10.1063/1.471197

4. Erle, U., M. Regier, C. Persch, and H. Schubert, "Dielectric properties of emulsions and suspensions: Mixture equations and measurement comparisons," J. Microw. Power Electromagn. Energy, Vol. 35, No. 3, 185-190, 2000.

5. Wang, Y., T. D. Wig, J. Tang, and L. M. Hallberg, "Dielectric properties of foods relevant to rf and microwave pasteurization and sterilization," J. Food Eng., Vol. 57, No. 3, 257-268, 2003.
doi:10.1016/S0260-8774(02)00306-0

6. El-Rayes, M. A. and F. T. Ulaby, "Microwave dielectric spectrum of vegetation --- Part 1: Experimental observations," IEEE Trans. Geosci. Remote Sensing, Vol. 25, No. 5, 541-549, 1987.
doi:10.1109/TGRS.1987.289832

7. Jackson, T. J., "Laboratory evaluation of a field-portable dielectric/soil-moisture probe," IEEE Trans. Geosci. Remote Sensing, Vol. 28, No. 2, 241-245, 1990.
doi:10.1109/36.46703

8. Kaatze, U. and Y. Feldman, "Broadband dielectric spectrometry of liquids and biosystems," Meas. Sci. Technol., Vol. 17, No. 2, R17-R35, 2006.
doi:10.1088/0957-0233/17/2/R01

9. Li, D. H. and J. J. Ganczarczyk, "Structure of activated sludge floes," Biotechnol. Bioeng., Vol. 35, No. 1, 57-65, 1990.
doi:10.1002/bit.260350109

10. Bobowski, J. S., T. Johnson, and C. Eskicioglu, "Permittivity of waste-activated sludge by an open-ended coaxial line," Prog. Electromagn. Res. Lett., Vol. 29, 129-139, 2012.

11. Eskicioglu, C., K. J. Kennedy, and R. L. Droste, "Enhanced disinfection and methane production from sewage sludge by microwave irradiation," Desalination, Vol. 248, No. 1-3, 279-285, 2009.
doi:10.1016/j.desal.2008.05.066

12. Appels, L., J. Baeyens, J. Degrµeve, and R. Dewil, "Principles and potential of the anaerobic digestion of waste-activated sludge," Prog. Energy Combust. Sci., Vol. 34, No. 6, 755-781, 2008.
doi:10.1016/j.pecs.2008.06.002

13. Pethig, R., "Dielectric properties of biological materials: Biophysical and medical applications," IEEE Trans. Electr. Insul., Vol. 19, No. 5, 453-474, 1984.
doi:10.1109/TEI.1984.298769

14. Stuchly, M. A. and S. S. Stuchly, "Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies --- A review," IEEE Trans. Instrum. Meas., Vol. 29, No. 3, 176-183, 1980.
doi:10.1109/TIM.1980.4314902

15. Baker-Jarvis, J., M. D. Janezic, P. D. Domich, and R. G. Geyer, "Analaysis of an open-ended coaxial probe with lift-off for nondestructive testing," IEEE Trans. Instrum. Meas., Vol. 43, No. 5, 711-718, 1994.
doi:10.1109/19.328897

16. Stogryn, A., "Equations for calculating the dielectric constant of saline water," IEEE Trans. Microwave Theor. Techn., Vol. 19, No. 8, 733-736, 1971.
doi:10.1109/TMTT.1971.1127617

17. Buchner, R., J. Barthel, and J. Stauber, "The dielectric relaxation of water between 0oC and 35oC," Chem. Phys. Lett., Vol. 306, No. 1-2, 57-63, 1999.
doi:10.1016/S0009-2614(99)00455-8

18. Bao, J.-Z., C. C. Davis, and M. L. Swicord, "Microwave dielectric measurements of erythrocyte suspensions," Biophys. J., Vol. 66, No. 6, 2173-2180, 1994.
doi:10.1016/S0006-3495(94)81013-6

19. Collin, R. E., Foundations for Microwave Engineering, 2nd Ed., John Wiley & Sons, New Jersey, 2001.

20. Kraszewski, A., M. A. Stuchly, and S. S. Stuchly, "ANA calibration method for measurements of dielectric properties," IEEE Trans. Instrum. Meas., Vol. 32, No. 2, 385-387, 1983.
doi:10.1109/TIM.1983.4315084

21. Da Silva, E. F. and M. K. McPhun, "Calibration techniques for one port measurement," Microwave J., Vol. 21, No. 6, 97-100, 1978.

22. Wei, Y.-Z. and S. Sridhar, "Technique for measuring the frequency-dependent complex dielectric constants of liquids up to 20 GHz," Rev. Sci. Instrum., Vol. 60, No. 9, 3041-3046, 1989.
doi:10.1063/1.1140601

23. Whit Athey, T., M. A. Stuchly, and S. S. Stuchly, "Measurement of radio frequency permittivity of biological tissues with an open-ended coaxial line: Part I," IEEE Trans. Microwave Theor. Techn., Vol. 30, No. 1, 82-86, 1982.
doi:10.1109/TMTT.1982.1131021

24. Stuchly, S. S., C. L. Sibbald, and J. M. Anderson, "A new aperture admittance model for open-ended waveguides," IEEE Trans. Microwave Theor. Techn., Vol. 42, No. 2, 192-198, 1994.
doi:10.1109/22.275246

25. Schwan, H. P., "Electrode polarization impedance and measurements in biological materials," Ann. New York Acad. Sci., Vol. 148, No. 1, 191-209, 1968.
doi:10.1111/j.1749-6632.1968.tb20349.x

26. Schwan, H. P., "Linear and nonlinear electrode polarization and biological materials," Ann. Biomed. Eng., Vol. 20, No. 3, 269-288, 1992.
doi:10.1007/BF02368531

27. Kuang, W. and S. O. Nelson, "Low-frequency dielectric properties of biological tissues: a review with some new insights," Trans. ASAE, Vol. 41, No. 1, 173-184, 1998.

28. Bordi, F., C. Cametti, and T. Gili, "Reduction of the contribution of electrode polarization effects in the radiowave dielectric measurements of highly conductive biological cell suspensions," Bioelectrochemistry, Vol. 54, No. 1, 53-61, 2001.
doi:10.1016/S1567-5394(01)00110-4

29. Raicu, V., T. Saibara, and A. Irimajiri, "Dielectric properties of rat liver in vivo: A noninvasive approach using an open-ended coaxial probe at audio/radio frequencies," Bioelectrochem. Bioenerg., Vol. 47, No. 2, 325-332, 1998.
doi:10.1016/S0302-4598(98)00171-8

30. Fricke, H., "The theory of electrolytic polarization," Phil. Mag., Vol. 14, No. 90, 310-318, 1932.

31. Asami, K. and T. Hanai, "Observations and the phenomenological interpretation of dielectric relaxation due to electrode polarization," Bull. Inst. Chem. Res. Kyoto Univ., Vol. 71, No. 2, 111-119, 1993.

32. Foster, K. R., J. L. Schepps, and H. P. Schwan, "Microwave dielectric relaxation in muscle. A second look," Biophys. J., Vol. 29, No. 2, 271-281, 1980.
doi:10.1016/S0006-3495(80)85131-9