Vol. 18
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-10-12
Scattering from Three-Dimensional Dispersive Gyrotropic Bodies Using the TLM Method
By
Progress In Electromagnetics Research B, Vol. 18, 225-241, 2009
Abstract
A three-dimensional scattering field Transmission Line Modeling (TLM) algorithm is established to obtain bistatic radar cross sections of frequency dispersive gyromagnetic objects. Starting from the 1D TLM modeling of gyrotropic materials, a scattering field TLM algorithm is derived for 3D calculations. For verification, the bistatic radar cross section results for several gyromagnetic structures are compared with the single frequency computations, where the permittivity and permeability tensors are made of complex constants at a given frequency.
Citation
Ahmet Fazil Yagli, Jay Kyoon Lee, and Ercument Arvas, "Scattering from Three-Dimensional Dispersive Gyrotropic Bodies Using the TLM Method," Progress In Electromagnetics Research B, Vol. 18, 225-241, 2009.
doi:10.2528/PIERB09091102
References

1. Hunsberger, F., R. Luebbers, and K. Kunz, "Finite-difference time-domain analysis of gyrotropic media --- I: Magnetized plasma," IEEE Trans. on Antennas and Propagation, Vol. 40, No. 12, 1489-1495, 1992.
doi:10.1109/8.204739

2. Hunsberger, F. P., "Extension of the finite-difference time-domain method to gyrotropic media," Ph.D. Dissertation, 1991.

3. Yaich, M. I., M. Khalladi, I. Zekik, and J. A. Morente, "Modeling of frequency-dependent magnetized plasma in hybrid symmetrical condensed TLM method," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 8, 293-295, 2002.
doi:10.1109/LMWC.2002.802027

4. Yaich, M. I. and M. Khalladi, "A SCN-TLM Model for the analysis of ferrite media," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 6, 217-219, 2003.
doi:10.1109/LMWC.2003.814105

5. Paul, J., C. Christopoulos, D. W. P. Thomas, and , "Generalized material models in TLM --- Part 2: Materials with anisotropic properties," EEE Trans. on Antennas and Propagation, Vol. 47, No. 10, 1535-1542, 1999.
doi:10.1109/8.805896

6. Vich, R., Z Trasform Theory and Applications, D. Reidel Publishing Company, 1987.

7. Sullivan, D., "Frequency-dependent FDTD methods using Z transform," IEEE Trans. on Antennas and Propagation, Vol. 40, No. 10, 1223-1230, 1992.
doi:10.1109/8.182455

8. Sullivan, D. M., "Nonlinear FDTD formulations using Z transforms," IEEE Trans. on Microwave Theory Tech., Vol. 43, No. 3, 676-682, 1995.
doi:10.1109/22.372115

9. Sullivan, D., "Z-Transform theory and the FDTD method," IEEE Trans. on Antennas and Propagation, Vol. 44, No. 1, 28-34, 1996.
doi:10.1109/8.477525

10. Huang, Sh. J. and F. Li, "FDTD simulation of electromagnetic propagation in magnetized plasma using Z transforms," International Journal of Infrared and Millimeter Waves, Vol. 25, No. 5, 815-825, 2004.
doi:10.1023/B:IJIM.0000027582.30125.16

11. Paul, J., "Modelling of general electromagnetic material properties in TLM," Ph.D. Dissertation, 1998.

12. Yagli, A. F., E. Arvas, and J. K. Lee, "Electromagnetic scattering from three-dimensional gyrotropic objects at single frequency using the TLM method," ACES Conference, 642-648, March 12 2006.

13. Yagli, A. F., J. K. Lee, and E. Arvas, "Monochromatic scattering from three-dimensional gyrotropic bodies using the TLM method," ACES Journal, Vol. 22, No. 1, 155-163, 2007.

14. Erkut, H. H., A. F. Yagli, and E. Arvas, "Electromagnetic scattering from a three-dimensional chiral body using the TLM method," ACES Conference, 649-654, March 12 2006.

15. Demir, V., "Electromagnetic scattering from three-dimensional chiral objects using the FDTD method," Ph.D. Dissertation, 2004.

16. Demir, V., A. Z. Elsherbeni, D. Worasawate, and E. Arvas, "A graphical user interface (GUI) for plane wave scattering from a conducting, dielectric or a chiral sphere," IEEE Antennas and Propagation Magazine, Vol. 46, No. 5, 94-99, 2004.
doi:10.1109/MAP.2004.1388838

17. Soohoo, R. F., Microwave Magnetics, Harper & Row Publishers, 1985.

18. Geng, Y. L. and X. B. Wu, "A plane electromagnetic wave scattering by a ferrite sphere," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 2, 161-179, 2004.
doi:10.1163/156939304323062022