Vol. 18
Latest Volume
All Volumes
2009-10-12
Scattering from Three-Dimensional Dispersive Gyrotropic Bodies Using the TLM Method
By
Progress In Electromagnetics Research B, Vol. 18, 225-241, 2009
Abstract
A three-dimensional scattering field Transmission Line Modeling (TLM) algorithm is established to obtain bistatic radar cross sections of frequency dispersive gyromagnetic objects. Starting from the 1D TLM modeling of gyrotropic materials, a scattering field TLM algorithm is derived for 3D calculations. For verification, the bistatic radar cross section results for several gyromagnetic structures are compared with the single frequency computations, where the permittivity and permeability tensors are made of complex constants at a given frequency.
Citation
Ahmet Fazil Yagli, Jay Kyoon Lee, and Ercument Arvas, "Scattering from Three-Dimensional Dispersive Gyrotropic Bodies Using the TLM Method," Progress In Electromagnetics Research B, Vol. 18, 225-241, 2009.
doi:10.2528/PIERB09091102
References

1. Hunsberger, F., R. Luebbers, and K. Kunz, "Finite-difference time-domain analysis of gyrotropic media --- I: Magnetized plasma," IEEE Trans. on Antennas and Propagation, Vol. 40, No. 12, 1489-1495, 1992.
doi:10.1109/8.204739

2. Hunsberger, F. P., "Extension of the finite-difference time-domain method to gyrotropic media," Ph.D. Dissertation, 1991.

3. Yaich, M. I., M. Khalladi, I. Zekik, and J. A. Morente, "Modeling of frequency-dependent magnetized plasma in hybrid symmetrical condensed TLM method," IEEE Microwave and Wireless Components Letters, Vol. 12, No. 8, 293-295, 2002.
doi:10.1109/LMWC.2002.802027

4. Yaich, M. I. and M. Khalladi, "A SCN-TLM Model for the analysis of ferrite media," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 6, 217-219, 2003.
doi:10.1109/LMWC.2003.814105

5. Paul, J., C. Christopoulos, D. W. P. Thomas, and , "Generalized material models in TLM --- Part 2: Materials with anisotropic properties," EEE Trans. on Antennas and Propagation, Vol. 47, No. 10, 1535-1542, 1999.
doi:10.1109/8.805896

6. Vich, R., Z Trasform Theory and Applications, D. Reidel Publishing Company, 1987.

7. Sullivan, D., "Frequency-dependent FDTD methods using Z transform," IEEE Trans. on Antennas and Propagation, Vol. 40, No. 10, 1223-1230, 1992.
doi:10.1109/8.182455

8. Sullivan, D. M., "Nonlinear FDTD formulations using Z transforms," IEEE Trans. on Microwave Theory Tech., Vol. 43, No. 3, 676-682, 1995.
doi:10.1109/22.372115

9. Sullivan, D., "Z-Transform theory and the FDTD method," IEEE Trans. on Antennas and Propagation, Vol. 44, No. 1, 28-34, 1996.
doi:10.1109/8.477525

10. Huang, Sh. J. and F. Li, "FDTD simulation of electromagnetic propagation in magnetized plasma using Z transforms," International Journal of Infrared and Millimeter Waves, Vol. 25, No. 5, 815-825, 2004.
doi:10.1023/B:IJIM.0000027582.30125.16

11. Paul, J., "Modelling of general electromagnetic material properties in TLM," Ph.D. Dissertation, 1998.

12. Yagli, A. F., E. Arvas, and J. K. Lee, "Electromagnetic scattering from three-dimensional gyrotropic objects at single frequency using the TLM method," ACES Conference, 642-648, March 12 2006.

13. Yagli, A. F., J. K. Lee, and E. Arvas, "Monochromatic scattering from three-dimensional gyrotropic bodies using the TLM method," ACES Journal, Vol. 22, No. 1, 155-163, 2007.

14. Erkut, H. H., A. F. Yagli, and E. Arvas, "Electromagnetic scattering from a three-dimensional chiral body using the TLM method," ACES Conference, 649-654, March 12 2006.

15. Demir, V., "Electromagnetic scattering from three-dimensional chiral objects using the FDTD method," Ph.D. Dissertation, 2004.

16. Demir, V., A. Z. Elsherbeni, D. Worasawate, and E. Arvas, "A graphical user interface (GUI) for plane wave scattering from a conducting, dielectric or a chiral sphere," IEEE Antennas and Propagation Magazine, Vol. 46, No. 5, 94-99, 2004.
doi:10.1109/MAP.2004.1388838

17. Soohoo, R. F., Microwave Magnetics, Harper & Row Publishers, 1985.

18. Geng, Y. L. and X. B. Wu, "A plane electromagnetic wave scattering by a ferrite sphere," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 2, 161-179, 2004.
doi:10.1163/156939304323062022