1. Feng, K. and M. Z. Qin, Symplectic Geometric Algorithm for Hamiltonian Systems, Zhejiang Science&Technology Press, 2003.
2. Sanz-Serna, J. M. and M. P. Calvo, Numerical Hamiltonian Problems, Chapman & Hall, 1994.
3. Hirono, T., W. Lui, S. Seki, and Y. Yoshikuni, "A threedimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator," IEEE Transactions on Microwave Theory andT echniques, Vol. 49, 1640-1648, Sept. 2001.
doi:10.1109/22.942578
4. Sha, W., X. L. Wu, and M. S. Chen, "A diagonal split-cell model for the high-order symplectic FDTD scheme," PIERS Online, Vol. 2, 715-719, Jun. 2006.
doi:10.2529/PIERS060903035033
5. Sha, W., Z. X. Huang, M. S. Chen, and X. L. Wu, "Survey on symplectic finite-difference time-domain schemes for Maxwell's equations," IEEE Transactions on Antennas and Propagation, Vol. 56, 493-500, Feb. 2008.
doi:10.1109/TAP.2007.915444
6. Shi, Y. and C. H. Liang, "Multidomain pseudospectral time domain algorithm using a symplectic integrator," IEEE Transactions on Antennas and Propagation, Vol. 55, 433-439, Feb. 2007.
doi:10.1109/TAP.2006.889906
7. Reich, S., "Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations ," Journal of Computational Physics, Vol. 157, 473-499, Jan. 2000.
doi:10.1006/jcph.1999.6372
8. Teixeira, F. L., "Geometric aspects of the simplicial discretization of Maxwell's equations," Progress In Electromagnetics Research, Vol. 32, 171-188, 2001.
doi:10.2528/PIER00080107
9. Zhou, X. L., "On independence completeness of Maxwell's equations and uniqueness theorems in electromagnetics," Progress In Electromagnetics Research, Vol. 64, 117-134, 2006.
doi:10.2528/PIER06061302
10. Everitt, W. N. and L. Markus, "Complex symplectic geometry with applications to ordinary differential operators ," Transactions of the American Mathematical Society, Vol. 351, 4905-4945, Dec. 1999.
doi:10.1090/S0002-9947-99-02418-6
11. Anderson, N. and A. M. Arthurs, "Helicity and variational principles for Maxwell's equations," International Journal of Electronics, Vol. 54, 861-864, Jun. 1983.
doi:10.1080/00207218308938781
12. Farago, I., R. Horvath, and W. H. A. Schilders, "Investigation of numerical time-integrations of Maxwell's equations using the staggered grid spatial discretization," International Journal of Numerical Modelling-electronic Networks Devices and Fields, Vol. 18, 149-169, Mar.-Apr. 2005.
doi:10.1002/jnm.570
13. Kole, J. S., M. T. Figge, and H. De Raedt, "Higher-order unconditionally stable algorithms to solve the time-dependent Maxwell equations," Physical Review E, Vol. 65, Jun. 2002.
doi:10.1103/PhysRevE.65.066705
14. Yoshida, H., "Construction of higher order symplectic integrators," Physica D: Nonlinear Phenomena, Vol. 46, 262-268, Nov. 1990.
15. Dopico, F. M. and C. R. Johnson, "Complementary bases in symplectic matrices and a proof that their determinant is one," Linear Algebra andIts Applications, Vol. 419, 772-778, Dec. 2006.
doi:10.1016/j.laa.2006.06.014