Vol. 8
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-06-06
Maxwell's Equations, Symplectic Matrix, and Grid
By
Progress In Electromagnetics Research B, Vol. 8, 115-127, 2008
Abstract
The connections between Maxwell's equations and symplectic matrix are studied. First, we analyze the continuous-time Maxwell's differential equations in free space and verify its time evolution matrix (TEMA) is symplectic-unitary matrix for complex space or symplectic-orthogonal matrix for real space. Second, the spatial differential operators are discretized by pseudo-spectral (PS) approach with collocated grid and by finite-difference (FD) method with staggered grid. For the PS approach, the TEMA conserves the symplectic-unitary property. For the FD method, the TEMA conserves the symplectic-orthogonal property. Finally, symplectic integration scheme is used in the time direction. In particular, we find the symplectiness of the TEMA also can be conserved. The mathematical proofs presented are helpful for further numerical study of symplectic schemes.
Citation
Wei Sha, Xian-Liang Wu, Zhixiang Huang, and Ming-Sheng Chen, "Maxwell's Equations, Symplectic Matrix, and Grid," Progress In Electromagnetics Research B, Vol. 8, 115-127, 2008.
doi:10.2528/PIERB08052303
References

1. Feng, K. and M. Z. Qin, Symplectic Geometric Algorithm for Hamiltonian Systems, Zhejiang Science&Technology Press, 2003.

2. Sanz-Serna, J. M. and M. P. Calvo, Numerical Hamiltonian Problems, Chapman & Hall, 1994.

3. Hirono, T., W. Lui, S. Seki, and Y. Yoshikuni, "A threedimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator," IEEE Transactions on Microwave Theory andT echniques, Vol. 49, 1640-1648, Sept. 2001.
doi:10.1109/22.942578

4. Sha, W., X. L. Wu, and M. S. Chen, "A diagonal split-cell model for the high-order symplectic FDTD scheme," PIERS Online, Vol. 2, 715-719, Jun. 2006.
doi:10.2529/PIERS060903035033

5. Sha, W., Z. X. Huang, M. S. Chen, and X. L. Wu, "Survey on symplectic finite-difference time-domain schemes for Maxwell's equations," IEEE Transactions on Antennas and Propagation, Vol. 56, 493-500, Feb. 2008.
doi:10.1109/TAP.2007.915444

6. Shi, Y. and C. H. Liang, "Multidomain pseudospectral time domain algorithm using a symplectic integrator," IEEE Transactions on Antennas and Propagation, Vol. 55, 433-439, Feb. 2007.
doi:10.1109/TAP.2006.889906

7. Reich, S., "Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations ," Journal of Computational Physics, Vol. 157, 473-499, Jan. 2000.
doi:10.1006/jcph.1999.6372

8. Teixeira, F. L., "Geometric aspects of the simplicial discretization of Maxwell's equations," Progress In Electromagnetics Research, Vol. 32, 171-188, 2001.
doi:10.2528/PIER00080107

9. Zhou, X. L., "On independence completeness of Maxwell's equations and uniqueness theorems in electromagnetics," Progress In Electromagnetics Research, Vol. 64, 117-134, 2006.
doi:10.2528/PIER06061302

10. Everitt, W. N. and L. Markus, "Complex symplectic geometry with applications to ordinary differential operators ," Transactions of the American Mathematical Society, Vol. 351, 4905-4945, Dec. 1999.
doi:10.1090/S0002-9947-99-02418-6

11. Anderson, N. and A. M. Arthurs, "Helicity and variational principles for Maxwell's equations," International Journal of Electronics, Vol. 54, 861-864, Jun. 1983.
doi:10.1080/00207218308938781

12. Farago, I., R. Horvath, and W. H. A. Schilders, "Investigation of numerical time-integrations of Maxwell's equations using the staggered grid spatial discretization," International Journal of Numerical Modelling-electronic Networks Devices and Fields, Vol. 18, 149-169, Mar.-Apr. 2005.
doi:10.1002/jnm.570

13. Kole, J. S., M. T. Figge, and H. De Raedt, "Higher-order unconditionally stable algorithms to solve the time-dependent Maxwell equations," Physical Review E, Vol. 65, Jun. 2002.
doi:10.1103/PhysRevE.65.066705

14. Yoshida, H., "Construction of higher order symplectic integrators," Physica D: Nonlinear Phenomena, Vol. 46, 262-268, Nov. 1990.

15. Dopico, F. M. and C. R. Johnson, "Complementary bases in symplectic matrices and a proof that their determinant is one," Linear Algebra andIts Applications, Vol. 419, 772-778, Dec. 2006.
doi:10.1016/j.laa.2006.06.014