Vol. 8
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-06-02
An Approach to Equivalent Circuit Modeling of Rectangular Microstrip Antennas
By
Progress In Electromagnetics Research B, Vol. 8, 77-86, 2008
Abstract
Computation of the broadband matching potential of a microstrip antenna requires the wideband lumped equivalent circuit of the antenna. The general topology of the equivalent circuit of rectangular microstrip patch antennas has been used to model the feedpoint impedance of microstrip antennas over a wide frequency band and equivalent circuit parameters are determined using optimization techniques. The proposed procedure overcomes the problems of physical realizability of the equivalent circuit and estimation of the starting values of the optimization. Applying this technique, wideband lumped equivalent circuits of a rectangular and E-shaped microstrip antenna have been computed which are in good agreement with measurement data from 0.1 to 6 GHz.
Citation
Mohammadali Ansarizadeh, Ayaz Ghorbani, and Raed A. Abd-Alhameed, "An Approach to Equivalent Circuit Modeling of Rectangular Microstrip Antennas," Progress In Electromagnetics Research B, Vol. 8, 77-86, 2008.
doi:10.2528/PIERB08050403
References

1. Ghorbani, A. and R. A. Abd-Alhameed, "An approach for calculating the limiting bandwidth — Reflection coefficient product for microstrip patch antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1328-1331, Apr. 2006.
doi:10.1109/TAP.2006.872641

2. Ghorbani, A. and M. A. Ansarizadeh, "The bode-fano integrals as an objective measure of antenna bandwidth reflection coefficient product limit ," 2006 International RF and Microwave Conference Proceedings, Putrajaya, Malaysia, Sept. 12–14, 2006.

3. Zhu, L. and Y. Qi, "A novel approach to evaluating the gainbandwidth potential of antennas," Antennas and Propagation SocietyInternational Symposium, AP-S. Digest, Vol. 3, 2058-2061, Jul. 1996.

4. Gustafsson, M. and S. Nordebo, "Bandwidth, Q factor, and resonance models of antennas," Progress In Electromagnetics Research, Vol. 62, 1-20, 2006.
doi:10.2528/PIER06033003

5. Fano, R. M., "Theoretical limitations on the broadband matching of arbitrary impedances," J. Franklin Institution, Vol. 249, 57-83, 139–155, Jan./Feb. 1950.

6. Youla, D. C., "A new theory of broadband matching ," IEEE Trans. on Circuit Theory, Vol. 11, 30-50, Mar. 1964.

7. Khalaj-Amirhosseini, M., "Wideband or multiband complex impedance matching using microstrip nonuniform transmission lines," Progress In Electromagnetics Research, Vol. 66, 15-25, 2006.

8. Liu, S.-F., X.-W. Shi, and S.-D. Liu, "Study on the impedancematching technique for high-temperature superconducting microstrip antennas ," Progress In Electromagnetics Research, Vol. 77, 281-284, 2007.
doi:10.2528/PIER07082502

9. Abdelaziz, A. A., "Bandwidth enhancement of microstrip antenna," Progress In Electromagnetics Research, Vol. 63, 311-317, 2006.
doi:10.2528/PIER06053001

10. Abboud, F., "Simple model for the input impedance of coax-fed rectangular microstrip patch antenna for CAD," IEE Proceedings, Vol. 135, Pt. H, No. 5, Oct. 1988.

11. Kajfez, D., "Deembedding of lossy foster networks," IEEE Trans. Antennas Propag., Vol. 53, No. 10, 1328-1331, Oct. 2005.

12. Kim, Y. and H. Ling, "Equivalent circuit modeling of broadband antennas using a rational function approximation," Microwave and Optical Technology Letters, Vol. 48, No. 5, 950-953, May 2006.
doi:10.1002/mop.21529

13. Wang, Y., J. Li, and L.-X. Ran, "An equivalent circuit modeling method for ultra-wideband antennas," Progress In Electromagnetics Research, Vol. 82, 433-445, 2008.
doi:10.2528/PIER08032303

14. Yarman, B. S., A. Kilinc, and A. Aksen, "Immitance data modelling via linear interpolation techniques: A classical circuit theory approach," International Journal of Circuit Theory and Applications, Vol. 32, 537-563, 2004.
doi:10.1002/cta.295

15. Richards, W., "An improved theory for microstrip patches," IEE Proc., Vol. 132, Pt. H, 93-98, 1985.

16. Yang, F., X.-Z. Zhang, and Y. R. Samii, "Wideband E-shaped patch antennas for wireless communications," IEEE Trans. Antennas Propagat., Vol. 49, No. 7, Jul. 2001.

17. Ang, B.-K. and B.-K. Chung, "A wideband E-shaped microstrip patch antenna for 5–6 GHz wireless communications," Progress In Electromagnetics Research, Vol. 75, 397-407, 2007.
doi:10.2528/PIER07061909

18. Ansari, J. A. and R. B. Ram, "E-shaped patch symmetrically loaded with tunnel diodes for frequency agile/broadband operation ," Progress In Electromagnetics Research B, Vol. 1, 29-42, 2008.
doi:10.2528/PIERB07101202

19. Jolani, F., A. M. Dadgarpour, and H. R. Hassani, "Compact Mslot folded patch antenna for WLAN," Progress In Electromagnetics Research Letters, Vol. 3, 35-42, 2008.
doi:10.2528/PIERL08012801

20. Sadat, S., M. Fardis, F. G. Kharakhili, and G. Dadashzadeh, "A compact microstrip square-ring slot antenna for UWBA applications," Progress In Electromagnetics Research, Vol. 67, 173-179, 2007.
doi:10.2528/PIER06082901

21. Khodae, G. F., J. Nourinia, and C. Ghobadi, "A practical miniaturized U-slot patch antenna with enhanced bandwidth ," Progress In Electromagnetics Research B, Vol. 3, 47-62, 2008.
doi:10.2528/PIERB07112201

22. Sadat, S., M. Houshmand, and M. Roshandel, "Design of a microstrip square-ring slot antenna filled by an H-shape slot for UWB applications," Progress In Electromagnetics Research, Vol. 70, 191-198, 2007.
doi:10.2528/PIER07012002

23. Alkanhal, M. A. S. and A. F. Sheta, "A novel dual-band reconfigurable square-ring microstrip antenna," Progress In Electromagnetics Research, Vol. 70, 337-349, 2007.
doi:10.2528/PIER07020703