Vol. 4
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-01-22
Dyadic Green's Function of an Elementary Point Source Above a Periodically-Defected-Grounded Dielectric Slab
By
Progress In Electromagnetics Research B, Vol. 4, 127-145, 2008
Abstract
A general formulation of Dyadic Green's function for a point source above a two-dimensional periodic boundary is presented in spectral form. This formulation is simplified by considering only the zero term of the infinite Floquet modes. Then it is applied to obtain the Dyadic Green's function of a printed source above a dielectric slab with periodically defected ground plane by using a generalized equivalent network of this defected ground plane. This equivalent network is obtained from the reflection coefficients of the defectedgrounded slab for different angles of incidence. This network includes equivalent impedances of the periodic surface for both TE and TM incident waves. In addition, it includes coupling impedance between the equivalent TE and TM networks. By determining the generalized equivalent network of the ground plane, the problem of the Green's function can be formulated by coupled TE and TM transmission line networks.
Citation
Ahmed Attiya, "Dyadic Green's Function of an Elementary Point Source Above a Periodically-Defected-Grounded Dielectric Slab," Progress In Electromagnetics Research B, Vol. 4, 127-145, 2008.
doi:10.2528/PIERB08011001
References

1. Enghata, N. and R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Exploration, Wiley-IEEE, 2006.

2. Sievenpiper, D., L. Zhang, R. F. Broas, N. G. Alexopoulos, and E. Yablonovitch, "High-impedance electromagnetic surface with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., Vol. 47, 2059-2074, November 1999.
doi:10.1109/22.798001

3. Kildal, P. S., "Artificially soft and hard surfaces in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 38, 1537-1544, October 1990.
doi:10.1109/8.59765

4. Zhang, J. Y., J. Y. von Hagen, M. Younis, C. Fischer, and W. Wiesbeck, "Planar artificial magnetic conductors and patch antennas," IEEE Trans. Antennas Propagat., Special Issue on Metamaterials, Vol. 53, Pt. I, 70-81, January 2005.

5. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EPG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propagat., Vol. 51, 2936-2946, October 2003.
doi:10.1109/TAP.2003.817983

6. Melezhik, P., A. Poyedinchuk, and N. Yashina, "Radiation from surface with periodic boundary of metamaterials excited by a current," Progress In Electromagnetics Research, Vol. 65, 1-14, 2006.
doi:10.2528/PIER06072504

7. Oskouei, H. D., K. Forooraghi, and M. Hakkak, "Guided and leaky characteristics of periodic defected ground structures," Progress In Electromagnetics Research, Vol. 73, 15-27, 2007.
doi:10.2528/PIER07031701

8. Terracher, F. and G. Berginc, "A numerical study of TM-type surface waves on grounded dielectric slab covered by a doubly periodic array of metallic patches," Progress In Electromagnetics Research, Vol. 43, 75-100, 2003.
doi:10.2528/PIER02122001

9. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.

10. Sigelmann, R. A. and A. Ishimaru, "Radiation from aperiodic structures excited by an aperiodic source," IEEE Trans. Antennas Propagat., Vol. 13, 354-364, May 1965.
doi:10.1109/TAP.1965.1138437

11. Yang, H. Y. D. and J. Wang, "Surface waves of printed antennas on planar artificial periodic dielectric structures," IEEE Trans. Antennas Propagat., Vol. 49, 444-450, March 2001.
doi:10.1109/8.753003

12. Yang, H. Y. D., "Theory of microstrip lines on artificial periodic substrates," IEEE Trans. Antennas Propagat., Vol. 47, 629-635, May 1999.

13. Capolino, F., D. R. Jackson, D. R. Wilton, and L. B. Felsen, "Comparison of methods for calculating the field excited by a dipole near a 2-D periodic material," IEEE Trans. Antennas Propagat., Special Issue on Electromagnetic Waves in Complex Environments: A Tribute to Leopold B. Felsen, Vol. 55, 1644-1655, June 2007.

14. Capolino, F., D. R. Jackson, and D. R. Wilton, "Fundamental properties of the field at the interface between air and a periodic artificial material excited by a line source," IEEE Trans. Antennas Propagat., Special Issue on Artificial Magnetic Conductors, Soft/Hard Surfaces, and Other Complex Surfaces, Vol. 53, 91-99, January 2005.
doi:10.1109/LMWC.2007.892964

15. Qiang, R., J. Chen, F. Capolino, D. R. Jackson, and D. R. Wilton, "ASM-FDTD: A technique for calculating the field of a finite source in the presence of an infinite periodic artificial material," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 4, 271-273, April 2007.
doi:10.1109/8.546248

16. Whites, K. W. and R. Mittra, "An equivalent boundary-condition model for lossy planar periodic structures at low frequencies," IEEE Trans. Antennas Propagat., Vol. 44, 1617-1629, December 1996.
doi:10.1109/TAP.2005.844417

17. Stufel, B. and Y. Pion, "Impedance boundary conditions for finite planar and curved frequency selective surfaces," IEEE Trans. Antennas Propagat., Vol. 53, 1415-1425, April 2005.
doi:10.1109/TAP.2005.858803

18. Stufel, B., "Impedance boundary conditions for finite planar or curved frequency selective surfaces embedded in dielectric layers," IEEE Trans. Antennas Propagat., Vol. 53, 3654-3663, November 2005.

19. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, 2000.
doi:10.1049/ip-map:20050198

20. Dubrovka, R., J. Vazquez, C. Parini, and D. Moore, "Equivalent circuit method for analysis and synthesis of frequency selective surfaces," IEE Proc. --- Microw. Antennas Propag., Vol. 153, No. 3, 213-220, June 2006.
doi:10.1109/TAP.2004.840520

21. Maci, S., M. Caiazzo, A. Cucini, and M. Casaletti, "A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab," IEEE Trans. Antennas Propagat., Vol. 53, 70-81, January 2005.
doi:10.1109/8.554261

22. Yang, H. Y. D., N. G. Alexopoulos, and E. Yablonovitch, "High-gain printed circuit antennas," IEEE Trans. Antennas Propagat., Vol. 45, 185-187, January 1997.
doi:10.1109/TMTT.2004.825660

23. Lynch, J. J. and J. S. Colburn, "Modeling polarization mode coupling in frequency-selective surfaces," IEEE Trans. Microwave Theory Tech., Vol. 52, 1328-1338, April 2004.
doi:10.1163/156939303322519658

24. Bilotti, F., L. Vegni, and F. Viviani, "Spectral dyadic Green’s function of integrated structures with high impedance ground plane," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 10, 1461-1484, 2003.
doi:10.1109/8.843669

25. Yang, H. Y. D. and D. R. Jackson, "Theory of line-source radiation from a metal-strip grating dielectric-slab structure," IEEE Trans. Antennas Propagat., Vol. 48, 556-564, April 2000.
doi:10.1109/TAP.1979.1142089

26. Munk, B. A. and G. A. Burrell, "Piecewise linear elements and its application in determining the impedance of a single linear antenna in a lossy half-space," IEEE Trans. Antennas Propagat., Vol. 27, 331-343, May 1979.
doi:10.2528/PIER06091401

27. Qing, A., "Vector spectral-domain method for the analysis of frequency selective surfaces," Progress In Electromagnetics Research, Vol. 65, 201-232, 2006.