1. Dragone, C., "New grids for improved polarization diplexing of microwaves in reflector antennas," IEEE Trans. Antennas Propagat., Vol. 26, 459-463, Mar. 1978.
doi:10.1109/TAP.1978.1141861
2. Hanfling, J. D., G. Jerinic, and L. R. Lewis, "Twist reflector design using E-type and H-type modes," IEEE Trans. Antennas Propagat., Vol. 29, 622-629, July 1981.
doi:10.1109/TAP.1981.1142632
3. Lier, E. and P.-S. Kildal, "Soft and hard horn antenna," IEEE Trans. Antennas Propagat., Vol. 36, 1152-1157, 1988.
doi:10.1109/8.7229
4. Lier, E., "Analysis of soft and hard strip-loaded horns using a circular cylindrical model," IEEE Trans. Antennas Propagat., Vol. 38, 783-793, June 1990.
doi:10.1109/8.55573
5. Kildal, P.-S., "Artificially soft and hard surfaces in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 38, 1537-1544, 1990.
doi:10.1109/8.59765
6. Sipus, Z., H. Merkel, and P.-S. Kildal, "Green's functions for planar soft and hard surfaces derived by asymptotic boundary conditions," IEE Proc. - Microwave Antennas Propag., Vol. 144, No. 5, 321-328, October 1977.
doi:10.1049/ip-map:19971335
7. Kildal, P.-S., A. A. Kishk, and A. Tengs, "Reduction of forward scattering from cylindrical objects using hard surfaces," IEEE Trans. Antennas Propagat., Vol. 44, 1509-1520, Nov. 1996.
doi:10.1109/8.542076
8. Kildal, P.-S., A. A. Kishk, and Z. Sipus, "Asymptotic boundary conditions for strip-loaded and corrugated surfaces," Microwave Opt. Technol. Lett., Vol. 14, 99-101, Feb. 1997.
doi:10.1002/(SICI)1098-2760(19970205)14:2<99::AID-MOP7>3.0.CO;2-G
9. Kishk, A. A. and P.-S. Kildal, "Asymptotic boundary conditions for strip-loaded scatterers applied to circular dielectric cylinders under oblique incidence," IEEE Trans. Antenna Propagat., Vol. 45, No. 2, 551-557, 1997.
10. Kishk, A. A. and P.-S. Kildal, "Asymptotic boundary conditions for strip-loaded surfaces of cylindrical structures with arbitrarily shaped cross-section," IEEE Antennas and Propagat. Int. Symposium, Vol. 2, 834-837, July 1999.
11. Kishk, A. A., "Analysis of hard surfaces of cylindrical structures of arbitrarily shaped crosssections using asymptotic boundary conditions," IEEE Trans. Antenna Propagat., Vol. 51, 1150-1156, June 2003.
doi:10.1109/TAP.2003.812270
12. Engheta, N. and R. W. Ziolkowski, "A positive future for doublenegative metamaterials," IEEE Trans. Microwave Theory and Techniques, Vol. 53, No. 4, 1535-1556, April 2005.
doi:10.1109/TMTT.2005.845188
13. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propagat., Vol. 51, No. 7, 1516-1529, July 2003.
doi:10.1109/TAP.2003.813622
14. Engheta, N., "Metamaterials with negative permittivity and permeability: Background, salient features, and new trends," 2003 IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 187-190, 2003.
doi:10.1109/MWSYM.2003.1210912
15. Shadrivov, I. V., A. A. Zharov, N. A. Zharov, and Y. S. Kivshar, "Nonlinear left-handed metamaterials," Radio Science, Vol. 40, RS3S90, 2005.
doi:10.1029/2004RS003191
16. Jelinek, L., J. Machac, and J. Zehentner, "A magnetic metamaterial composed of randomly oriented SRRs," PIERS Online, Vol. 2, No. 6, 624-627, 2006.
doi:10.2529/PIERS060831080303
17. Sihvola, A. H., P. Yla-Oijala, S. Jarvenpaa, and M. Taskinen, "Searching for electrostatic resonances in metamaterials using surface integral equation approach," PIERS Online, Vol. 3, No. 1, 118-121, 2007.
doi:10.2529/PIERS060906073935
18. Lindell, I. V., S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media --- Media with negative parameters, capable of supporting backward waves," Microwave and Optical Technology Letters, Vol. 31, No. 2, 129-133, Oct. 2001.
doi:10.1002/mop.1378
19. Valanju, P. M., R. M. Walser, and A. P. Valanju, "Wave refraction in negative-index media: Always positive and very inhomogeneous," Physical Review Letters, Vol. 88, No. 18, 012220, 2002.
doi:10.1103/PhysRevLett.88.187401
20. Smith, D. R. and N. Kroll, "Negative refractive index in lefthanded material," Phys. Rev. Lett., Vol. 85, 2933, Oct. 2 2000.
doi:10.1103/PhysRevLett.85.2933
21. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Physical Review Letter, Vol. 64, 056625, 2001.
22. Pendry, J. B., "Negative refraction," Contemporary Physics, Vol. 45, No. 3, 191-203, 2004.
doi:10.1080/00107510410001667434
23. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of and," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699
24. Zharov, A. A., I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear properties of left-handed metamaterials," Physical Review Letters, Vol. 91, No. 3, 03740121-03740124, Mar. 2003.
doi:10.1103/PhysRevLett.91.037401
25. Liang, L., B. Li, S.-H. Liu, and C.-H. Liang, "A study of using the double negative structure to enhance the gain of rectangular waveguide antenna arrays," Progress In Electromagnetics Research, Vol. 65, 275-286, 2006.
doi:10.2528/PIER06103102
26. Caloz, C. and T. Itoh, "Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line," IEEE Trans. Microwave Theory Tech., Vol. 52, 1159-1166, May 2004.
27. Mittra, R., K. Rajab, and M. T. Lanagan, "Size reduction of microstrip antennas using metamaterials," Proc. IEEE AP-S, July 2005.
28. Erentok, A. and R. W. Ziolkowski, "Development of epsilon negative (ENG) metamaterials for efficient electrically small antenna applications," Proc. IEEE AP-S, July 2005.
29. Pendry, J. B., "Negative refraction makes a perfect lens," Physics Review Letter, Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966
30. Lagarkov, A. N., V. N. Kisel, and V. N. Semenenko, "Wideangle absorption by the use of a metamaterial plate," PIER Letters, Vol. 1, 35-44, 2008.
doi:10.2528/PIERL07111809
31. Henin, B. H., M. H. Al Sharkawy, and A. Z. Elsherbeni, "Scattering of obliquely incident plane wave by an array of parallel concentric metamaterials cylinders," Progress In Electromagnetics Research, Vol. 77, 285-307, 2007.
doi:10.2528/PIER07082102
32. Valagiannopoulos, C. A., "Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other," Progress In Electromagnetics Research B, Vol. 3, 23-34, 2008.
doi:10.2528/PIERB07112906
33. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDTD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803
34. Li, C. and Z. Shen, "Electromagnetic scattering by a conducting cylinder coated with metamaterials," Progress In Electromagnetics Research, Vol. 42, 91-105, 2003.
doi:10.2528/PIER03012901
35. Shooshtrai, A. and A. R. Sebak, "Electromagnetic scattering by parallel metamaterial cylinders," Progress In Electromagnetics Research, Vol. 57, 165-177, 2006.
doi:10.2528/PIER05071103
36. Henin, B. H., A. Z. Elsherbeni, and M. H. Al Sharkawy, "Oblique incidence plane wave scattering from an array of circular dielectric cylinders," Progress In Electromagnetics Researc, Vol. 68, 261-279, 2007.
doi:10.2528/PIER06083102
37. Ragheb, H. A. and M. Hamid, "Scattering by N parallel conducting circular cylinders," Int. J. Electron., Vol. 59, 407-421, Jan. 1985.
doi:10.1080/00207218508920712
38. Hamid, A. K. and M. I. Hussein, "Iterative solution to the electromagnetic plane wave scattering by two parallel conducting elliptic cylinders," Journal of Electromagnetic Waves and Applications, Vol. 17, 813-828, 2003.
doi:10.1163/156939303322503376
39. Kim, C. S., "Scattering of an obliquely incident wave by a coated elliptical conducting cylinder," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 11, 1169-1186, 1991.
40. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104: 1-5, 2002.
41. Ishimaru, A., S.-W. Lee, Y. Kuga, and V. Jandhyala, "Generalized constitutive relations for metamaterials based on the quasi-static Lorentz theory," IEEE Trans. Antennas Propagat., Vol. 51, 2550-2557, October 2003.
doi:10.1109/TAP.2003.817565
42. Lubkowski, G., R. Schuhmann, and T. Weiland, "Extraction of effective metamaterial parameters by parameter fitting of dispersive models," Microwave and Optical Technology Letters, Vol. 49, No. 2, Feb. 2007.
doi:10.1002/mop.22105
43. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184, 2000.
doi:10.1103/PhysRevLett.84.4184
44. Markos, P. and C. M. Soukoulis, "Transmission properties and effective electromagnetic parameters of double negative metamaterials," Optics Express, Vol. 11, No. 7, April 7 2003.
45. Smith, D. R., D. C. Vier, W. Padilla, S. C. Nemat-Nasser, and S. Schultz, "Loop-wire medium for investigating plasmons at microwave frequencies," Appl. Phys. Lett., Vol. 75, 1425-1427, 1999.
doi:10.1063/1.124714
46. Tretyakov, S. A., I. S. Nefedov, C. R. Simovski, and S. I. Maslovski, "Advances in electromagnetics of complex media and metamaterials," NATO-ARW Proceedings, 2002.
47. Markos, P. and C. M. Soukoulis, "Transmission studies of the lefthanded materials," Phys. Rev. B, Vol. 65, 033401, 2002.
48. Bohren, C. and D. Huffmann, Absorption and Scattering of Light by Small Particles, John Wiley, 1983.
49. Jackson, J. D., Classical Electrodynamics, John Wiley, 1999.