Vol. 70

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2016-10-27

Investigation of Alignment Errors on Multi-Static Microwave Imaging Based on Frequency-Diverse Metamaterial Apertures

By Hayrettin Odabasi, Mohammadreza F. Imani, Guy Lipworth, Jonah Gollub, and David R. Smith
Progress In Electromagnetics Research B, Vol. 70, 101-112, 2016
doi:10.2528/PIERB16052801

Abstract

We examine the effect of alignment errors on the performance of a frequency-diverse imaging system composed of metamaterial apertures. In a frequency-diverse imaging system, a sequence of distinct radiation patterns, indexed by frequency, provides measurements of the spatial content of a scene. This set of measurements can then be used to obtain a high-fidelity estimate of the scene using computational imaging techniques. As with any computational imaging system, realizing the full potential of the frequency-diverse system requires accurate characterization of the complex radiation patterns. This characterization entails precise knowledge of the locations and orientations of the transmitters and receivers; any discrepancy between the modeled and actual locations will introduce phase error and degrade the quality of image reconstructions. Here, we study the effect of various misalignment errors on the performance of a sparse, bistatic, frequency diverse imaging system and provide an estimate on the levels of error within which the frequency-diverse apertures can reconstruct high quality images. Depending on the misalignment type (i.e., displacement, rotation) and direction the phase error can change significantly. As a result, for instance, we show that the imaging system is significantly less sensitive to cross-range displacement errors than to range displacement errors. We also show that the displacement errors are reduced for larger systems comprising many sub-apertures, due to the reduced averaged phase error. We find the impact of rotational errors is small compared to that of the displacement errors. However, as the sub-aperture size increases, rotational errors become more pronounced, becoming severe for larger sub-apertures with multiple feeds.

Citation


Hayrettin Odabasi, Mohammadreza F. Imani, Guy Lipworth, Jonah Gollub, and David R. Smith, "Investigation of Alignment Errors on Multi-Static Microwave Imaging Based on Frequency-Diverse Metamaterial Apertures," Progress In Electromagnetics Research B, Vol. 70, 101-112, 2016.
doi:10.2528/PIERB16052801
http://jpier.org/PIERB/pier.php?paper=16052801

References


    1. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional milimeter-wave imaging for concealed weapon detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 9, 1581-1592, 2001.
    doi:10.1109/22.942570

    2. Nikolova, N. K., "Microwave imaging for breast cancer," IEEE Microwave Magazine, Vol. 12, No. 7, 78-94, 2011.
    doi:10.1109/MMM.2011.942702

    3. Wang, Y. and A. E. Fathy, "Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 5, 1986-2000, 2012.
    doi:10.1109/TGRS.2011.2170694

    4. Chan, W. L., K. Charan, T. Dharmpal, K. F. Kelly, R. G. Baraniuk, and D. M. Mittleman, "A single-pixel terahertz imaging system based on compressed sensing," Applied Physics Letters, Vol. 93, No. 12, 121105, 2008.
    doi:10.1063/1.2989126

    5. Levy, U., H. C. Kim, C. H. Tsai, and Y. Fainman, "Near-IR demonstration of computer-generated holograms implemented using subwavelength gratings with space-variant orientation," Opt. Letters, Vol. 30, 2089-2091, 2005.
    doi:10.1364/OL.30.002089

    6. Watts, C. M., D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, "Terahertz compressive imaging with metamaterial spatial light modulators," Nature Photonics, Vol. 8, No. 8, 605-609, 2014.
    doi:10.1038/nphoton.2014.139

    7. Liutkus, A., D. Martina, S. Popoff, G. Chardon, O. Katz, G. Lerosey, S. Gigan, L. Daudet, and I. Carron, "Imaging with nature: Compressive imaging using a multiply scattering medium," Scientific Reports, Vol. 4, 5552, 2014.

    8. Hunt, J., T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, "Metamaterial apertures for computational imaging," Science, Vol. 339, No. 6117, 310-313, 2013.
    doi:10.1126/science.1230054

    9. Lipworth, G., A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, "Metamaterial apertures for coherent computational imaging on the physical layer," Journal of the Optical Society of America A, Vol. 30, No. 8, 1603-1612, 2013.
    doi:10.1364/JOSAA.30.001603

    10. Hunt, J., J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. Reynolds, D. J. Brady, and D. R. Smith, "Metamaterial microwave holographic imaging system," Journal of the Optical Society of America A, Vol. 31, No. 10, 2109-2119, 2014.
    doi:10.1364/JOSAA.31.002109

    11. Lipworth, G., A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, "Comprehensive simulation platform for a metamaterial imaging system," Appl. Opt., Vol. 54, No. 31, 9343-9353, 2015.
    doi:10.1364/AO.54.009343

    12. Yurduseven, O., M. F. Imani, H. Odabasi, J. Gollub, G. Lipworth, A. Rose, and D. R. Smith, "Resolution of the frequency diverse metamaterial aperture imager," Progress In Electromagnetics Research, Vol. 150, 97-107, 2015.
    doi:10.2528/PIER14113002

    13. Hand, T. H., J. Gollub, S. Sajuyigbe, D. R. Smith, and S. A. Cummer, "Characterization of complementary electric field coupled resonant surfaces," Appl. Phys. Lett., Vol. 93, 212504, 2008.
    doi:10.1063/1.3037215

    14. Wahl, D. E., P. H. Eichel, D. C. Ghiglia, and C. V. Jakowatz, "Phase gradient autofocus-a robust tool for high resolution SAR phase correction," IEEE Transactions on Aerospace and Electronic Systems, Vol. 30, No. 3, 827-835, 1994.
    doi:10.1109/7.303752

    15. Ye, W., T. S. Yeo, and Z. Bao, "Weighted least-squares estimation of phase errors for SAR/ISAR autofocus," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 5, 2487-2892, 1999.
    doi:10.1109/36.789644

    16. Li, X., G. Liu, and J. Ni, "Autofocusing of ISAR images based on entropy minimization," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 4, 1240-1252, 1999.
    doi:10.1109/7.805442

    17. Li, J., R. Wu, and V. C. Chen, "Robust autofocus algorithm for ISAR imaging of moving targets," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 3, 1056-1069, 2001.
    doi:10.1109/7.953256

    18. Blacknell, D., A. Freeman, S. Quegan, and I. A. Ward, "Geometric accuracy in airborne SAR images," IEEE Transactions on Aerospace and Electronic Systems, Vol. 25, No. 2, 241-258, 1989.
    doi:10.1109/7.18685

    19. Fornaro, G., G. Franceschetti, and S. Perna, "Motion compensation errors: Effects on the accuracy of airborne SAR images," IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, No. 4, 1338-1352, 2005.
    doi:10.1109/TAES.2005.1561888

    20. Alvarez, Y., Y. Rodriguez-Vaqueiro, B. Gonzalez-Valdez, and J. A. Martinez-Lorenzo, "Phase error compensation in imaging systems using compressed sensing techniques," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1574-1577, 2013.
    doi:10.1109/LAWP.2013.2293314

    21. Ugur, S. and O. Arikan, "SAR image reconstruction and autofocus by compressed sensing," Digital Signal Processing, Vol. 22, No. 6, 923-932, 2012.
    doi:10.1016/j.dsp.2012.07.011

    22. Tian, J., J. Sun, X. Han, and B. Zhang, "Motion compensation for compressive sensing SAR imaging with autofocus," 2011 6th IEEE Conference on Industrial Electronics and Applications, 1564-1567, 2011.

    23. Fromenteze, T., O. Yurduseven, M. F. Imani, J. Gollub, C. Decroze, D. Carsenat, and S. Perna, "Computational imaging using a mode-mixing cavity at microwave frequencies," Appl. Phys. Lett., Vol. 106, 194104, 2015.
    doi:10.1063/1.4921081

    24. Sleasman, T., M. F. Imani, J. N. Gollub, and D. S. Smith, "Dynamic metamaterial aperture for microwave imaging," Appl. Phys. Lett., Vol. 107, 204104, 2015.
    doi:10.1063/1.4935941

    25. Marks, D. L., J. Gollub, and D. R. Smith, "Spatially resolving antenna arrays using frequency diversity," Journal of the Optical Society of America A, Vol. 33, No. 5, 899-912, 2016.
    doi:10.1364/JOSAA.33.000899

    26. Brady, D. J., Optical Imaging and Spectroscopy, Wiley and OSA, 2009.
    doi:10.1002/9780470443736

    27. Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. Der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Ed., SIAM, Philadelphia, 1994.
    doi:10.1137/1.9781611971538

    28. Bioucas-Dias, J. M. and M. A. T. Figueiredo, "A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration," IEEE Transactions on Image Processing, Vol. 16, No. 12, 2992-3004, 2007.
    doi:10.1109/TIP.2007.909319

    29. Hunt, J. D., Metamaterials for Computational Imaging, Duke University, 2013.