Vol. 44
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-09-26
Analytical Method for Coupling Calculations of Rotated Iris Coupled Resonator Cavity
By
Progress In Electromagnetics Research B, Vol. 44, 223-239, 2012
Abstract
Iris type waveguide to cavity couplers are used to couple power to particle accelerator cavities. Waveguide to cavity coupling for arbitrarily oriented rectangular iris is analyzed using Bethe's small hole coupling theory. Magnetic moment of rotated iris is obtained by defining its dyadic magnetic polarizability. Power radiated by magnetic moment into the incoming waveguide is used for coupling calculations at arbitrary angle. A close agreement is found between the proposed theory, simulations and microwave measurements.
Citation
Rajesh Kumar, Pitamber Singh, Manmohan Singh Bhatia, and Girish Kumar, "Analytical Method for Coupling Calculations of Rotated Iris Coupled Resonator Cavity," Progress In Electromagnetics Research B, Vol. 44, 223-239, 2012.
doi:10.2528/PIERB12071901
References

1. Bethe, A., "Theory of diffraction by small holes," Physical Review, Vol. 66, 163-182, Oct. 1944.
doi:10.1103/PhysRev.66.163

2. Cohn, S. B., "Determination of aperture parameters by electrolytic-tank measurements," Proceedings of the IRE, Vol. 66, 1416-1421, Nov. 1951.

3. Gao, J., "Analytical formula for the coupling coefficient β of a cavity-waveguide coupled system," Nuclear Instruments and Methods, Vol. A309, 5-10, 1991.

4. Gao, J., "Analytical determination of the coupling coefficient of waveguide cavity coupling systems," Nuclear Instruments and Methods, Vol. A481, 36-42, 2002.

5. Kumar, R., "A novel method for variable coupling using iris rotation in RF couplers," Nuclear Instruments and Methods, Vol. A600, 534-537, 2009.

6. Balleyguier, P. and M. Painchault, "Design of RF power input ports for IPHI RFQ," Proc. European Particle Accelerator Conf. EPAC, 2124, Paris, 2002.

7. Balleyguier, P., "External Q studies for APT cavity couplers," Proc. Linear Accelerator Conf. LINAC, 133-135, Chicago, 1998.

8. Kamigaito, O., "Circuit model representation of external-Q calculation," Phys. Rev. ST Accl. Beams, Vol. 9, 062003, 2006.
doi:10.1103/PhysRevSTAB.9.062003

9. Rengarajan, S. R., "Analysis of a centered-inclined waveguide slot coupler," IEEE Trans. Microwave Theory Tech., Vol. 37, No. 5, 884-889, May 1989.
doi:10.1109/22.17455

10. Rengarajan, S. R., "Characteristics of a longitudional/transverse coupling slot in crossed rectangular waveguides," IEEE Trans. Microwave Theory Tech., Vol. 37, No. 8, 1171-1177, Aug. 1989.
doi:10.1109/22.31075

11. Nesterenko, , M. V., V. A. Katrich, Y. M. Penkin, S. L. Berdnik, "Analytical methods in theory of slot-hole coupling of electrodynamic volumes," Progress In Electromagnetics Research, Vol. 70, 79-174, 2007.
doi:10.2528/PIER06121203

12. Accatino, L., G. Bertin, and M. Mongiardo, "A four pole dual mode elliptic filter realized in circular cavity," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 12, 2680-2687, Dec. 1996.
doi:10.1109/22.554629

13. Khan, Z. A., C. F. Bunting, and M. D. Deshpande, "Shielding effectiveness of metallic enclosures at oblique and arbitrary polarizations," IEEE Trans. Electromagnetic Compatibility, Vol. 47, No. 1, 112-122, Feb. 2005.
doi:10.1109/TEMC.2004.842117

14. Saito, Y. and D. S. Filipovic, "Analysis and design of monolithic rectangular coaxial lines for minimum coupling," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 12, 2521-2530, Dec. 2007.
doi:10.1109/TMTT.2007.910092

15. Collins, R. E., Field Theory of Guided Waves, IEEE Press, 1996.

16. Mongia, R. K. and R. K. Arora, "Equivalent circuit parameters of an aperture coupled open resonator cavity," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 8, 1245-1250, Aug. 1993.
doi:10.1109/22.241661

17. Roy, R. and O. Shanker, "Calculation of inter cavity coupling coefficient for side coupled standing wave linear accelerator," IEEE Trans. Microwave Theory Tech., Vol. 41, No. 6, 1233-1235, Jan. 1993.
doi:10.1109/22.238552

18. McDonald, N. A., "Polynomial approximations for the electric polarizabilities of some small apertures," IEEE Trans. Microwave Theory Tech., Vol. 33, No. 11, 1146-1149, Nov. 1985.
doi:10.1109/TMTT.1985.1133186

19. McDonald, N. A., "Simple approximations for the longitudinal magnetic polarizabilities of some small apertures," IEEE Trans. Microwave Theory Tech., Vol. 36, No. 7, 1141-1144, Jul. 1988.
doi:10.1109/22.3648

20. McDonald, N. A., "Polynomial approximations for the transverse magnetic polarizabilities of some small apertures," IEEE Trans. Microwave Theory Tech., Vol. 35, No. 1, 20-23, Jan. 1987.
doi:10.1109/TMTT.1987.1133589

21. McDonald, N. A., "Electric and magnetic coupling through small apertures in shield walls of any thickness," IEEE Trans. Microwave Theory Tech., Vol. 20, 689-685, Oct. 1972.

22. Pozar, M., Microwave Engineering, 2nd Ed., 333, Wiley, New York, 2003.

23. Kang, Y., S. Kim, M. Doleans, I. E. Campisi, M. Stirbet, P. Kneisel, G. Ciovati, G. Wu, and P. Yla-Oijala, "Electromagnetic simulations and properties of the fundamental power couplers for the SNS superconducting cavities," Proc. Particle Accelerator Conference, (PAC-2001), 1122-1124, Jun. 2001.