Vol. 42

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-06-25

Theoretical Examination of Electromagnetic Wave Tunneling through Cascaded ϵ- and μ-Negative Metamaterial Slabs

By Chien-Hao Liu and Nader Behdad
Progress In Electromagnetics Research B, Vol. 42, 1-22, 2012
doi:10.2528/PIERB12051016

Abstract

In this paper, we examine the close relationship that exists between the phenomenon of electromagnetic (EM) wave tunneling through stacks of single-negative metamaterial slabs and classical microwave filter theory. In particular, we examine the propagation of EM waves through a generalized multi-layer structure composed of N ϵ-negative layers separated from each other by N-1 μ-negative layers, where N≥2 is a positive integer. We demonstrate that, if certain conditions are met, this multi-layer structure can act as a capacitively-coupled, coupled-resonator filter with an Nth-order bandpass response. Exploiting this relationship, we develop a generalized, analytical synthesis method that can be used to determine the physical parameters of this structure from its a priori known frequency response. We present several design examples in conjunction with numerical EM simulation results to demonstrate the validity of this analogy and examine the accuracy of the proposed synthesis procedure.

Citation


Chien-Hao Liu and Nader Behdad, "Theoretical Examination of Electromagnetic Wave Tunneling through Cascaded ϵ- and μ-Negative Metamaterial Slabs," Progress In Electromagnetics Research B, Vol. 42, 1-22, 2012.
doi:10.2528/PIERB12051016
http://jpier.org/PIERB/pier.php?paper=12051016

References


    1. Tai, G. C., Y. W. Kiang, and C. H. Chen, "Plasma-dielectric sandwich structure used as a tunable bamlpass microwave filter," IEEE Trans. on Microw. Theory and Techn., Vol. 32, 111-113, 1984.
    doi:10.1109/TMTT.1984.1132621

    2. Dragila, B., B. Luther-Davies, and S. Vukovic, "High transparency of classically opaque metallic films," Phys. Rev. Lett., Vol. 55, 1117-1120, 1985.
    doi:10.1103/PhysRevLett.55.1117

    3. Alu, A. and N. Engtheta, "Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency," IEEE Trans. on Antennas and Propag., Vol. 51, 2558-2571, 2003.
    doi:10.1109/TAP.2003.817553

    4. Alu, A. and N. Engtheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers ," IEEE Trans. on Microw. Theory and Techn., Vol. 52, 199-210, 2004.
    doi:10.1109/TMTT.2003.821274

    5. Jiang, H., H. Chen, H. Li, Y. Zhang, J. Zi, and S. Zhu, "Properties of one-dimensional photonic crystals containing single-negative materials," IEEE Trans. on Phys. Rev. E, Vol. 69, 066607, 2004.
    doi:10.1103/PhysRevE.69.066607

    6. Kim, K. Y., "Photon tunneling in composite layers of negative-and positive-index media," Phys. Rev. E, Vol. 70, 047603, 2004.
    doi:10.1103/PhysRevE.70.047603

    7. Kim, K. Y., "Properties of photon tunneling through single-negative materials," Opt. Lett., Vol. 30, 430-432, 2005.
    doi:10.1364/OL.30.000430

    8. Alu, A. and N. Engtheta, "Evanescent growth and tunneling through stacks of frequency-selective surfaces," IEEE Antennas and Wireless Propag. Lett., Vol. 4, 417-420, 2005.
    doi:10.1109/LAWP.2005.859381

    9. Zhou, L., W. Wen, C. T. Chen, and P. Sheng, "Electromagnetic wave tunneling through negative-permittivity media with high magnetic fields," Phys. Rev. Lett., Vol. 94, 243905, 2005.
    doi:10.1103/PhysRevLett.94.243905

    10. Hooper, I. R., T. W. Preist, and J. R. Sambles, "Making tunnel barriers (including metals) transparent," Phys. Rev. Lett., Vol. 97, 053902, 2006.
    doi:10.1103/PhysRevLett.97.053902

    11. Alu, A., N. Engtheta, and R. W. Ziolkowski, "Transmission-line analysis of epsilon-near-zero (ENZ)-filled narrow channels," Phys. Rev. E, Vol. 74, 016604, 2006.
    doi:10.1103/PhysRevE.74.016604

    12. Guan, G., H. Jiang, H. Li, H. Zhang, H. Chen, and S. Zhu, "Tunneling modes of photonic heterostructures consisting of single-negative materials," Appl. Phys. Lett., Vol. 88, 211112, 2006.
    doi:10.1063/1.2207218

    13. Kim, K. Y. and B. Lee, "Complete tunneling of light through impedance-mismatched barrier layers," Phys. Rev. A, Vol. 77, 023822, 2008.
    doi:10.1103/PhysRevA.77.023822

    14. Feng, T., Y. Li, H. Jiang, Y. Sun, H. Li, Y. Zhang, Y. Shi, and H. Chen, "Electromagnetic tunneling in a sandwich structure containing single negative media ," Phys. Rev. E, Vol. 79, 026601, 2009.
    doi:10.1103/PhysRevE.79.026601

    15. Ding, Y., Y. Li, H. Jiang, and H. Chen, "Electromagnetic tunneling in nonconjugated epsilon-negative and mu-negative metamaterial pair," PIERS Online, Vol. 6, 109-112, 2010.
    doi:10.2529/PIERS091004104845

    16. Butler, C. A. M., I. R. Hooper, A. P. Hibbins, J. R. Sambles, and P. A. Hobson, "Metamaterial tunnel barrier gives broadband microwave transmission," J. Appl. Phys., Vol. 109, 013104, 2011.
    doi:10.1063/1.3525557

    17. Al-Joumayly, M. and N. Behdad, "A generalized method for synthesizing low-profile, band-pass frequency selective surfaces with non-resonant constituting elements," IEEE Trans. on Antennas and Propag., Vol. 58, 4033-4041, 2010.
    doi:10.1109/TAP.2010.2078474

    18. Castaldi, G., I. Gallina, V. Galdi, A. Alu, and N. Engheta, "Electromagnetic tunneling through a single-negative slab paired with a double-positive bilayer," Phys. Rev. B, Vol. 83, 081105, 2011.
    doi:10.1103/PhysRevB.83.081105

    19. Castaldi, G., I. Gallina, V. Galdi, A. Alu, and N. Engheta, "Transformation-optics generalization of tunneling effects in bilayers made of paired epsilon-negative/mu-negative media," J. Opt., Vol. 13, 024011, 2011.
    doi:10.1088/2040-8978/13/2/024011

    20. Zverev, A. I., Hankbook of Filter Synthesis, Wiley-Interscience, New York, 1967.

    21. Cameron, R. J., Microwave Magazine, Vol. 12, 42, 2011.