Vol. 25

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-08-20

Miniature and Higher-Order Mode Ferrite MIMO Ring Patch Antenna for Mobile Communication System

By Seok Bae, Yang-Ki Hong, Jae-Jin Lee, Ji-Hoon Park, Jeevan Jalli, Gavin Abo, Hyuck M. Kwon, and Chandana K. K. Jayasooriya
Progress In Electromagnetics Research B, Vol. 25, 53-74, 2010
doi:10.2528/PIERB10071910

Abstract

Miniaturized ferrite ring patch antennas (RPAs) were designed and fabricated for multiple-input multiple-out (MIMO) applications. Design parameters of higher-order mode ferrite RPAs, 1-RPA and 2-RPA, were optimized, and antenna performance of the ferrite 1-RPA was evaluated. The Z-type hexaferrite and 2%-weight borosilicate glass composite was used for the ferrite antenna disk. The measured permeability (μr) and permittivity (εr) of the hexaferrite were 2.59 and 5.7, respectively, at 2.5 GHz. Threemode orthogonal radiation of the ferrite 1-RPA was experimentally confirmed. With regard to the ferrite 2-RPA, excellent isolation (-40 dB) between ports 1 and 2 was achieved at 2.5 GHz. This excellent isolation property is attributed to both mode 3 orthogonal radiations of the bottom and top RPAs. The volumes of the 1- and 2-RPA were reduced to 14.5% and 34.5%, respectively, from 95 cm3 of a dielectric 2-circular patch antenna (2-CPA) volume.

Citation


Seok Bae, Yang-Ki Hong, Jae-Jin Lee, Ji-Hoon Park, Jeevan Jalli, Gavin Abo, Hyuck M. Kwon, and Chandana K. K. Jayasooriya, "Miniature and Higher-Order Mode Ferrite MIMO Ring Patch Antenna for Mobile Communication System," Progress In Electromagnetics Research B, Vol. 25, 53-74, 2010.
doi:10.2528/PIERB10071910
http://jpier.org/PIERB/pier.php?paper=10071910

References


    1. Bhatti, R. A., J. H. Choi, and S. O. Park, "Quad-band MIMO antenna array for portable wireless communications terminals," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 129-132, 2009.
    doi:10.1109/LAWP.2008.2012274

    2. Chung, K. and J. H. Yoon, "Integrated MIMO antenna with high isolation characteristic," Electronics Letters, Vol. 43, No. 4, 199-201, 2007.
    doi:10.1049/el:20070012

    3. Vaughan, R. G., "Two-port higher mode circular microstrip antenna," IEEE Trans. Antennas Prop., Vol. 36, 309-321, Mar. 1988.
    doi:10.1109/8.192112

    4. Vaughan, R. G. and J. B. Anderson, "A multiport patch antenna for mobile communications," Proc. 14th European Microwave Conference, 607-612, 1984.
    doi:10.1109/EUMA.1984.333391

    5. Forenza, A., R. W. Heath, and Jr., "Benefit of pattern diversity via two-element array of circular patch antennas in indoor clustered MIMO channels," IEEE Trans. on Comm., Vol. 54, 943-954, May 2006.
    doi:10.1109/TCOMM.2006.873978

    6. Forenza, A., R. W. Heath, and Jr., "Optimization methodology for designing 2-CPAs exploiting pattern diversity in clustered MIMO channels," IEEE Trans. on Comm., Vol. 56, No. 10, 1748-1759, 2008.
    doi:10.1109/TCOMM.2008.060582

    7. Bae, S., Y. K. Hong, and A. Lyle, "Effect of Ni-Zn ferrite on bandwidth and radiation efficiency of embedded antenna for mobile phone," J. Appl. Phys., Vol. 103, 07E929, 2008.

    8. Bae, S., Y. K. Hong, J. J. Lee, J. Jalli, G. S. Abo, W. M. Sung, G. H. Kim, S. H. Park, J. S. Kum, and H. M. Kwon, "Co2Z hexaferrite T-DMB antenna for mobile phone applications," IEEE Trans. Magn., Vol. 45, No. 10, 4199-4203, 2009.
    doi:10.1109/TMAG.2009.2022412

    9. Kim, Y., S. Bae, and J. R. Kim, "Effect of ferrite substrate on antenna miniaturization," J. Korean Phys. Soc., Vol. 52, 127-141, 2008.
    doi:10.3938/jkps.52.127

    10. Mahmud, S. T., A. K. M. Akther Hossain, A. K. M. Abdul Hakim, M. Seki, T. Kawai, and H. Tabata, "Influence of microstructure on the complex permeability of spinel type Ni-Zn ferrite," J. Magn. Magn. Matr., Vol. 305, 269-274, 2006.
    doi:10.1016/j.jmmm.2006.01.012

    11. Kulkarni, D. C., S. P. Patil, and V. Puri, "Properties of NixZn(1-x)Fe2O4 thick films at microwave frequencies," Microelectronics J., Vol. 39, 248-252, 2008.
    doi:10.1016/j.mejo.2007.12.008

    12. Tsutaoka, T., T. Kasagi, and K. Hatakeyama, "Magnetic field effect on the complex permeability for a Mn-Zn ferrite and its composite materials," J. Euro. Ceramic Soc., Vol. 19, 1531-1535, 1999.
    doi:10.1016/S0955-2219(98)00474-9

    13. Thakur, A., P. Mathur, and M. Singh, "Study of dielectric behavior of Mn-Zn nano ferrites," J. Phys. and Chem. of Solids, Vol. 68, 378-381, 2007.
    doi:10.1016/j.jpcs.2006.11.028

    14. Zhao, H., J. Zhou, and L. Li, "Complex permeability spectra of Co-substituted lithium zinc perminvar ferrite," Key Eng. Mat., Vol. 368--372, 591-593, 2008.
    doi:10.4028/www.scientific.net/KEM.368-372.591

    15. Ramesh, B. and D. Ravinder, "Electrical properties of Li-Mn ferrites," Mat. Letters, Vol. 62, 2043-2046, 2008.
    doi:10.1016/j.matlet.2007.11.010

    16. Bush, G. G., "The complex permeability of a high purity yttrium iron garnet sputtered thin film," J. Appl. Phys., Vol. 73, 6310-6311, 1993.
    doi:10.1063/1.352680

    17. Krupka, J., S. A. Gabelich, K. Derzakowski, and B. M. Pierce, "Comparison of split post dielectric resonator and ferrite disc resonator techniques for microwave permittivity measurements of polycrystalline yttrium iron garnet," Meas. Sci. Technol., Vol. 10, 1004-1008, 1999.
    doi:10.1088/0957-0233/10/11/305

    18. Kim, C. W. and J. G. Koh, "A study of synthesis of NiCuZn ferrite sintering in low temperature by metal nitrates and its electromagnetic property," J. Magn. Magn. Matr., Vol. 257, 355-368, 2003.
    doi:10.1016/S0304-8853(02)01234-9

    19. Wang, H., J. Liu, W. Li, J. Wang, L. Wang, L. Song, S. Yuan, and F. Li, "Structural, dynamic magnetic and dielectric properties of Ni0.15Cu0.2Zn0.65Fe2O4 ferrite produced by NaOH co-precipitation method," J. Alloys and Compounds, Vol. 461, 373-377, 2008.
    doi:10.1016/j.jallcom.2007.06.095

    20. Shepherd, P., K. K. Mallick, and R. J. Green, "Magnetic and structural properties of M-type barium hexaferrite prepared by co-precipitation," J. Magn. Magn. Matr., Vol. 311, 683-692, 2007.
    doi:10.1016/j.jmmm.2006.08.046

    21. Mallick, K. K., P. Shepherd, and R. J. Green, "Dielectric properties of M-type barium hexaferrite prepared by co-precipitation," J. of Euro. Ceramic Soc., Vol. 27, 2045-2052, 2007.
    doi:10.1016/j.jeurceramsoc.2006.05.098

    22. Bae, S., Y. K. Hong, J. J. Lee, J. Jalli, G. S. Abo, A. Lyle, W. M. Seong, and J. S. Kum, "Low loss Z-type barium ferrite (Co2Z) for T-DMB antenna application," J. Appl. Phys., Vol. 105, 07A515, 2009.

    23. Bae, S., Y. K. Hong, J. J. Lee, J. Jalli, G. S. Abo, A. Lyle, I. T. Nam, W. M. Seong, J. S. Kum, and S. H. Park, "New synthetic route of Z-type (Ba3Co2Fe24O41) hexaferrite particles," IEEE Trans. Magn., Vol. 45, No. 6, 2557-2560, 2009.
    doi:10.1109/TMAG.2009.2018883

    24. Bai, Y., J. Zhou, Z. Gui, and L. Li, "Magnetic properties of Cu, Zn-modified Co2Y hexaferrites," J. Magn. Magn. Matr., Vol. 246, 140-144, 2002.
    doi:10.1016/S0304-8853(02)00040-9

    25. Bai, Y., J. Zhou, Z. Gui, L. Li, and L. Qiao, "The physics properties of Bi-Zn codoped Y-type hexagonal ferrite," J. Alloys and Compounds, Vol. 450, 412-416, 2008.
    doi:10.1016/j.jallcom.2006.10.122

    26. Lin, C.-S., C.-C. Hwang, T.-H. Huang, G.-P. Wang, and C.-H. Peng, "Fine powders of SrFe12O19 with SrTiO3 additive prepared via a quasi-dry combustion synthesis route," Mat. Sci. and Eng. B, Vol. 139, 24-36, 2007.
    doi:10.1016/j.mseb.2007.01.053

    27. Balanis, C. A., Antenna Theory: Analysis and Design, 2nd Ed., Wiley, New York, 1982.

    28. Ikonen, P. M. T., K. N. Rozanov, A. V. Osipov, P. Alitalo, and S. A. Tretyakov, "Magnetodielectric substrates in antenna miniaturization: Potential and limitations," IEEE Trans. on Ant. and Prop., Vol. 54, 3391-3399, Nov. 2006.

    29. Hansen, R. C. and M. Burke, "Antenna with magneto-dielectrics," Microwave Opt. Technol. Lett., Vol. 26, No. 2, 75-78, 2000.
    doi:10.1002/1098-2760(20000720)26:2<75::AID-MOP3>3.0.CO;2-W

    30. Chu, L. J., "Physical limitations of omni-directional antennas," J. Appl. Phys., Vol. 19, 1163-1175, 1948.
    doi:10.1063/1.1715038

    31. Mclean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. on Ant. and Prop., Vol. 44, 672-675, May 1996.
    doi:10.1109/8.496253

    32. Ziolkowski, R. W. and A. Erentok, "At and below the Chu limit: Passive and active broad bandwidth metamaterial-based electrically small antennas," IET Microw., Ant. and Prop., Vol. 1, 116-128, Feb. 2007.
    doi:10.1049/iet-map:20050342

    33. Caimi, F. M., Theoretical size constraints for antennas based on quality factor Q, Released document by IEEE P802.15 working group, IEEE 802:15 < 02/295 >, July 2002.

    34. Walser, R. M., W. Win, and P. M. Valanju, "Shape-optimized ferromagnetic particles with maximum theoretical microwave susceptibility," IEEE Trans. Magn., Vol. 34, 1390-1392, 1998.
    doi:10.1109/20.706558

    35. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electron Lett., Vol. 39, 705, 2003.
    doi:10.1049/el:20030495