Vol. 13
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-02-09
TEM Horn Antenna for Ultra-Wide Band Microwave Breast Imaging
By
Progress In Electromagnetics Research B, Vol. 13, 59-74, 2009
Abstract
A novel TEM horn antenna placed in a solid dielectric medium is proposed for microwave imaging of the breast. The major design requirement is that the antenna couples the microwave energy into the tissue without being immersed itself in a coupling medium. The antenna achieves this requirement by: 1) directing all radiated power through its front aperture,and 2) blocking external electromagnetic interference by a carefully designed enclosure consisting of copper sheets and power absorbing sheets. In the whole ultra-wide band the antenna features: 1) good impedance match, 2) uniform field distribution at the antenna aperture, and 3) good coupling efficiency.
Citation
Reza K. Amineh, Aastha Trehan, and Natalia K. Nikolova, "TEM Horn Antenna for Ultra-Wide Band Microwave Breast Imaging," Progress In Electromagnetics Research B, Vol. 13, 59-74, 2009.
doi:10.2528/PIERB08122213
References

1. Rubæk, T., P . M. Meaney, P . Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton's method and the CGLS inversion algorithm," IEEE Trans. Antennas and Propag., Vol. 55, No. 8, 2320-2331, August 2007.
doi:10.1109/TAP.2007.901993

2. Woten, D. A., J. Lusth, and M. El-Shenawee, "Interpreting artificial neural networks for microwave detection of breast cancer," IEEE Microwave Wirel. Components Lett., Vol. 17, No. 12, 825-827, December 2007.
doi:10.1109/LMWC.2007.910466

3. Davis, S. K., B. D. Van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Trans. Biomed. Eng., Vol. 55, No. 1, 237-246, January 2008.
doi:10.1109/TBME.2007.900564

4. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, PIER 83, 413-434, 2008.

5. Fhager, A. and M. Persson, "Using a priori data to improve the reconstruction of small objects in microwave tomography," IEEE Trans. Microwav. Theory Tech., Vol. 55, No. 11, 2454-2462, November 2007.
doi:10.1109/TMTT.2007.908670

6. Yu, C., M. Yuan, J. Stang, E. Bresslour, R. T. George, G. A. Ybarra, W. T. Joines, and Q. H. Liu, "Active microwave imaging II: 3-D system prototype and image reconstruction from experimental data," IEEE Trans. Microwav. Theory Tech., Vol. 56, No. 4, 991-1000, April 2008.
doi:10.1109/TMTT.2008.919661

7. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Improved delay-and-sum beamforming algorithm for breast cancer detection," Int. J. Antennas and Propag., Vol. 2008, Article ID 761402.

8. Chew, W. C and J. H. Lin, "A frequency-hopping approach for microwave imaging of large inhomogeneous bodies," IEEE Microw. Guided Wav. Lett., Vol. 5, No. 12, 439-441, ecem ber 1995.
doi:10.1109/75.481854

9. Jafari, H. M., M. J. Deen, S. Hranilovic, and N. K. Nikolova, "A study of ultrawideband antennas for near-field imaging," IEEE Trans. Antennas and Propag., Vol. 55, No. 4, 1184-1188, April 2007.
doi:10.1109/TAP.2007.893405

10. Jafari, H. M., J. M. Deen, S. Hranilovic, and N. K. Nikolova, "Copolarised and cross-polarised antenna arrays for breast,cancer detection," IET Microw. Antennas Propag., Vol. 1, No. 5, 1055-1058, October 2007.
doi:10.1049/iet-map:20060327

11. Woten, D. A. and M. El-Shenawee, "Broadband dual linear polarized antenna for statistical detection of breast cancer," IEEE Trans. Antennas and Propag., Vol. 56, No. 11, 3576-3580, November 2008.
doi:10.1109/TAP.2008.2005545

12., Nilavalan, R., I. J. Craddock, A. Preece, J. Leendertz, and R. Benjamin, "Wideband microstrip patch antenna design for breast cancer tumour detection ," IET Microw. Antennas Propag., Vol. 1, No. 2, 277-281, April 2007.

13. Kanj, H. and M. Popovic, "A Novel ultra-compact broadband antenna for microwave breast tumor detection," Progress In Electromagnetics Research, PIER 86, 169-198, 2008.

14. Li, X., S. C. Hagness, M. K. Choi, and D. Van Der Weide, "Numerical and experimental investigation of an ultra-wideband ridged pyramidal-horn antenna with curved launching plane for pulse radiation," IEEE Antennas Wirel. Propag. Lett., Vol. 2, 259-262, 2003.

15. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, S. P. Poplack, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography," Acad Radiol., Vol. 14, No. 2, 207-218, February 2007.
doi:10.1016/j.acra.2006.10.016

16. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection: Study of immersion liquids," Electron. Lett., Vol. 41, No. 3, 113-115, 2005.
doi:10.1049/el:20056953

17. Odendaal, J., J. Joubert, and M. J. Prinsloo, "Extended edge wave diffraction model for near-filed directivity calculations of horn antennas," IEEE Trans. Instrument. and Measur., Vol. 54, No. 6, 2469-2473, December 2005.
doi:10.1109/TIM.2005.858141

18. Chung, K., S. Pyun, and J. Choi, "Design of an ultrawide-band TEM horn antenna with a microstrip-type balun," IEEE Trans. Antennas and Propag., Vol. 53, No. 10, 3410-3413, October 2005.
doi:10.1109/TAP.2005.856396

19. Malherbe, J. A. G. and N. Barnes, "TEM horn antenna with an elliptic profile," Microw. Opt. Tech. Lett., Vol. 49, No. 7, 1548-1551, July 2007.
doi:10.1002/mop.22488

20. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagne, "A large-scale study of the ultrawide band microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001

21. Ansoft Corporation, USA, http://www.ansoft.com.