Vol. 5

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2008-02-04

Wiener-Hopf Analysis of Planar Canonical Structures Loaded with Longitudinally Magnetized Plasma Biased Normally to the Extra-Ordinary Wave Propagation

By George Kyriacou
Progress In Electromagnetics Research B, Vol. 5, 1-34, 2008
doi:10.2528/PIERB07121907

Abstract

The canonical problem of an extra-ordinary Transverse Electromagnetic wave propagating in a parallel plane waveguide with a semi-infinite upper conductor and loaded with magnetized plasma is considered. The homogeneous biasing constant magnetic field is assumed parallel to the substrate and normal to the wave propagation, which incidents normally on the truncated edge. The Wiener-Hopf technique is employed and the corresponding equations are formulated for the open-radiating structure as well as for a closed one resulting from the placement of a metallic shield parallel to the waveguide planes. Closed form field expressions are obtained for the shielded geometry, while the open geometry Kernel factorization is left for future extensions. Important non-reciprocal wave propagation phenomena are involved, which lend non-even function properties to the involved Kernels. Hence, their factorization becomes non-trivial requiring new mathematical approaches. Finally, a review of the involved non-reciprocal and/or unidirectional surface waves is given, which is related to the involved mathematical complexities.

Citation


George Kyriacou, "Wiener-Hopf Analysis of Planar Canonical Structures Loaded with Longitudinally Magnetized Plasma Biased Normally to the Extra-Ordinary Wave Propagation," Progress In Electromagnetics Research B, Vol. 5, 1-34, 2008.
doi:10.2528/PIERB07121907
http://jpier.org/PIERB/pier.php?paper=07121907

References


    1. Chen, H., B.-I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
    doi:10.1163/156939306779322585

    2. Mavridis, A. A., G. A. Kyriacou, and J. N. Sahalos, "On the design of patch antennas tuned by transversely magnetized lossy Ferrite including a novel resonating mode," Progress In Electromagnetics Research, Vol. 62, 165-192, 2006.
    doi:10.2528/PIER06041301

    3. Ma, Y., V. K. Varadan, and V. V. Varadan, "Prediction of electromagnetic properties of Ferrite composites," Progress In Electromagnetics Research, Vol. 06, 315-326, 1992.

    4. Che, W., E. K. Yung, K. Wu, and X. Nie, "Design investigation on millimeter-wave Ferrite phase shifter in substrate integrated waveguide," Progress In Electromagnetics Research, Vol. 45, 263-275, 2004.
    doi:10.2528/PIER03082801

    5. Matsunaga, M., "A coupled-mode theory-based analysis of coupled microstrip lines on a Ferrite substrate," Progress In Electromagnetics Research, Vol. 42, 219-232, 2003.
    doi:10.2528/PIER03022202

    6. Zagriadski, S. V. and S. Choi, "Excitation and reception of electromagnetic,magnetostatic and spin waves in Ferrite films," Progress In Electromagnetics Research, Vol. 35, 183-216, 2002.
    doi:10.2528/PIER01061101

    7. Tarkhanyan, R. H. and N. K. Uzunoglu, "Propagation of electromagnetic waves on the lateral surface of a Ferrite/semiconductor superlattice at quantum hall-effect conditions," Progress In Electromagnetics Research, Vol. 29, 321-335, 2000.
    doi:10.2528/PIER00011901

    8. Kudrin, A. V., E. Y. Petrov, G. A. Kyriacou, and T. M. Zaboronkova, "Insulated cylindrical antenna in a cold magnetoplasma," Progress In Electromagnetics Research, Vol. 53, 135-166, 2005.
    doi:10.2528/PIER04090101

    9. Huang, H., Y. Fan, B.-I. Wu, F. M. Kong, and J. A. Kong, "Surface modes at the interfaces between isotropic media and uniaxial plasma," Progress In Electromagnetics Research, Vol. 76, 1-14, 2007.
    doi:10.2528/PIER07062005

    10. Jandieri, G. V., A. Ishimaru, V. G. Jandieri, A. G. Khantadze, and Z. M. Diasamidze, "Model computations of angular power spectra for anisotropic absorptive turbulent magnetized plasma," Progress In Electromagnetics Research, Vol. 70, 307-328, 2007.
    doi:10.2528/PIER07013103

    11. Qian, Z. H., R. Chen, K. W. Leung, and H. W. Yang, "FDTD analysis of microstrip patch antenna covered by plasma sheath," Progress In Electromagnetics Research, Vol. 52, 173-183, 2005.
    doi:10.2528/PIER04080901

    12. Soliman, E. A., A. Helaly, and A. A. Megahed, "Propagation of electromagnetic waves in planar bounded plasma region," Progress In Electromagnetics Research, Vol. 67, 25-37, 2007.
    doi:10.2528/PIER06071102

    13. Hunsberger, F., R. Luebbers, and K. Kunz, "Finite-Difference Time-Domain analysis of gyrotropic media-I: Magnetized plasma," IEEE Trans. Antennas and Propagation, Vol. 40, 1489-1495, 1992.
    doi:10.1109/8.204739

    14. Kashiwa, T., N. Yoshida, and I. Fukai, "Transient analysis of a magnetized plasma in three-dimensional space," IEEE Trans. Antennas and Propagation, Vol. 36, 1096-1105, 1988.
    doi:10.1109/8.7222

    15. Kashiwa, T., N. Yoshida, and I. Fukai, "Time domain analysis of patch antennas in a magnetized plasma by a spatial network method," IEEE Trans. Antennas and Propagation, Vol. 39, 147-150, 1991.
    doi:10.1109/8.68175

    16. El-Sherbiny, A. M., "Hybrid mode analysis of microstrip lines on anisotropic substrates," IEEE Trans. Microwave Theory Tech., Vol. 29, 1261-1265, 1981.
    doi:10.1109/TMTT.1981.1130550

    17. El-Sherbiny, A. M., "Exact analysis of shielded microstrip lines and bilateral fin lines ," IEEE Trans. Microwave Theory Tech., Vol. 29, 669-675, 1981.
    doi:10.1109/TMTT.1981.1130427

    18. Kyriacou, G. A. and J. N. Sahalos, "The edge admittance model for the study of microstrips on uniaxial substrate," Archiv. fur Elektrotech., Vol. 76, 169-179, 1993.
    doi:10.1007/BF01597596

    19. Kyriacou, G. A. and J. N. Sahalos, "A Wiener-Hopf type analysis of microstrips printed on uniaxial substrates: Effect of the substrate thickness," IEEE Trans. Microwave Theory Tech., Vol. 43, 1967-1977, 1995.
    doi:10.1109/22.402287

    20. Kyriacou, G. A. and J. N. Sahalos, "A Wiener-Hopf type analysis of uniaxial substrates-superstrate microstrip structures," IEEE Trans. Microwave Theory Tech., Vol. 45, 616-629, 1997.
    doi:10.1109/22.575576

    21. Johansen, E. L., "The radiation properties of a parallel-plane waveguide in a transversely magnetized homogeneous plasma," IEEE Trans. Microwave Theory Tech., Vol. 13, 77-89, 1965.
    doi:10.1109/TMTT.1965.1125932

    22. Noble, B., Methods Based on the Wiener-Hopf Technique, Pergamon Press, 1958.

    23. Mittra, R. and S. W. Lee, Analytical Techniques in the Theory of Guided Waves, McMillan, New York, 1971.

    24. Janaswamy, R., "Wiener-Hopf analysis of the asymmetric slotline," Radio Science, Vol. 25, No. 5, 699-706, 1990.
    doi:10.1029/RS025i005p00699

    25. Collin, R. E., Field Theory of Guided Waves, 2nd Ed., IEEE Press, NJ, 1990.

    26. Seshadri, S. R. and W. F. Pickard, "Surface waves on an anisotropic plasma sheath," IEEE Trans. Microwave Theory and Techniques, Vol. 12, 529-541, 1964.
    doi:10.1109/TMTT.1964.1125869

    27. Kobayashi, K., S. Koshikawa, and A. Sawai, "Diffraction by a parallel-plate waveguide cavity with dielectric/Ferrite loading: Part I - The case of E polarization," Progress In Electromagnetics Research, Vol. 08, 377-426, 1994.

    28. Koshikawa, S. and K. Kobayashi, "Diffraction by a parallel-plate waveguide cavity with dielectric/Ferrite loading: Part II - The case of H polarization," Progress In Electromagnetics Research, Vol. 08, 427-458, 1994.

    29. Ishimaru, A., The effect of the radiation from a plasma sheath of a unidirectional surface wave along a perfectly conducting plane, Techn. Rept., No. 64, College of Engineering, University of Washington, Seattle, 1962.

    30. Titchmarsh, E. C., The Theory of Functions, 2nd Ed., Oxford University Press, 1939.

    31. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, 9th Printing, Dover Publ., 1972.

    32. Hoyaux, M. F., Solid State Plasmas, Applied Physics Series, Pion Ltd., London, 1970.

    33. Talisa, S. H. and D. M. Bolle, "Performance predictions for isolators and differential phase shifters for the near-millimeter wave range," IEEE Trans. on Microwave Theory and Tech., Vol. 29, 1338-1343, 1981.
    doi:10.1109/TMTT.1981.1130562

    34. Hwang, W. L. and D. M. Bolle, "Magnetoplasma surface wave analysis for an H-guide structure containing semiconductor," Int. J. Infrared & Mil. Waves, Vol. 4, No. 5, 819-830, 1983.
    doi:10.1007/BF01009700

    35. Ivanov, S. T. and N. I. Nikolaev, "Magnetic-field effect on wave dispersion in a free semiconductor slab," J. Phys. D: Appl. Phys., Vol. 32, 430-439, 1999.
    doi:10.1088/0022-3727/32/4/013

    36. Mittra, R. and S. W. Lee, "Mode Matching Method for anisotropic guides," Radio Science, Vol. 2, No. 8, 937-942, 1967.

    37. Tamir, T. and A. A. Oliner, "The spectrum of electromagnetic waves guided by a plasma layer," IEEE Proc., Vol. 51, 317-332, 1963.
    doi:10.1109/PROC.1963.1758

    38. Barybin, A. A., "Modal expansions and orthogonal complements in the theory of complex media waveguide excitation by external sources for isotropic, anisotropic, and bianisotropic media," Progress In Electromagnetics Research, Vol. 19, 241-300, 1998.
    doi:10.2528/PIER97120800