1. Guy, A. W., J. F. Lehmann, J. B. Stonebridge, and C. C. Sorenson, "Development of a 915-MHz direct-contact applicator for therapeutic heating of tissues," IEEE Trans. Microwave Theory Tech., Vol. MTT-26, No. 8, 550-556, 1978.
doi:10.1109/TMTT.1978.1129437
2. Uzunoglu, N. K., E. A. Angelikas, and P. A. Cosmidis, "A 432MHz local hyperthermia system using an indirectly cooled, water-loaded waveguide applicator," IEEE Trans. Microwave Theory Tech., Vol. MTT-35, 106-111, 1987.
doi:10.1109/TMTT.1987.1133611
3. Verba, Jr., J., C. Franconi, F. Montecchia, and I. Vannucci, "Evanescent-mode applicators (EMA) for superficial and subcutaneous hyperthermia," IEEE Trans. Microwave Theory Tech., Vol. MTT-40, 397-407, 1993.
4. Stuchly, M. A., S. S. Stuchly, and G. Kantor, "Diathermy applicators with circular aperture and corrugated flange," IEEE Trans. Microwave Theory Tech., Vol. MTT-28, No. 3, 267-271, 1980.
doi:10.1109/TMTT.1980.1130054
5. Lin, J. C., G. Kantor, and A. Ghods, "A class of new microwave therapeutic applicators," Radio Sci., Vol. 17, No. 10, 1982.
6. Samaras, T., P. J. M. Rietveld, and G. C. V. Rhoon, "Effectiveness of FDTD in predicting SAR distributions from the Lucite cone applicator," IEEE Trans. Microwave Theory Tech., Vol. MTT-48, No. 1, 2059-2063, 2000.
7. Nikawa, Y., H. Wantanabe, M. Kikuchi, and S. Mori, "A direct-contact microwave lens applicator with a microcomputercontrolled heating system for local hyperthermia," IEEE Trans. Microwave Theory Tech., Vol. MTT-34, No. 5, 626-630, 1986.
doi:10.1109/TMTT.1986.1133402
8. Sherar, M. D., F. F. Liu, D. J. Newcombe, B. Cooper, W. Levin, W. B. Taylor, and J. W. Hunt, "Beam shaping for microwave waveguide hyperthermia applicators," Int. J. Radiat. Oncol. Biol. Phys. (UK), Vol. 25, 849-857, 1993.
9. Alexander, P. H. and J. Liu, "Field analysis of dielectricloaded lens applicator for microwave hyperthermia," IEEE Trans. Microwave Theory Tech., Vol. MTT-41, No. 5, 792-796, 1993.
doi:10.1109/22.234512
10. Compton, Jr., R. T., The admittance of aperture antenna radiating into lossy media, Rep. 1691-5, Antenna Laboratory Ohio State University, Research Foundation, Columbus, Ohio, 1964.
11. Harrington, R. F., Time-harmonic Electromagnetic Field, 123-135, McGraw-Hill Book Company, 1961.
12. Silver, S. (ed.), Microwave Antenna Theory and Design, Vol. 12, 123-135, MIT Radiation laboratory series, 1949.
13. International Telephone and Telegraph Company, Reference data for radio engineers, Reference data for radio engineers, 5/e, 1968.
14. Stuchly, M. A. and S. S. Stuchly, "Dielectric properties of biological substances-tabulated," J. Microwave Power, Vol. 15, No. 1, 19-26, 1980.
15. Manson, P. A., W. D. Hurt, T. J. D'Andra, P. Gaj˘sek, K. L. Ryan, D. A. Nelson, K. I. Smith, and J. M. Ziriax, "Effect of frequency, permittivity, and voxel size on predicted specific absorption rate values in biological tissue during electromagnetic field exposure," IEEE Trans. Microwave Theory Tech., Vol. MTT-48, No. 1, 2050-2058, 2000.
16. Loane, J., H. Ling, B. F. Wang, and S. W. Lee, "Experimental investigation of a retro-focused microwave hyperthermia applicator: Conjugate-field matching scheme," IEEE Trans. Microwave Theory Tech., Vol. MTT-34, No. 5, 490-494, 1986.
doi:10.1109/TMTT.1986.1133381
17. Gee, W., S.-W. Lee, N. K. Bong, C. A. Cain, R. Mittra, and R. L. Magin, "Focused array hyperthermia applicator: Theory and experiment," IEEE Trans. Biomed. Eng., Vol. BME-31, No. 1, 38-46, 1984.