Vol. 42
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-08-14
Primary User Signal Detection Based on Virtual Multiple Antennas for Cognitive Radio Networks
By
Progress In Electromagnetics Research C, Vol. 42, 213-227, 2013
Abstract
Primary user (PU) signal detection is critical for cognitive radio networks as it allows a secondary user to find spectrum holes for opportunistic reuse. Eigenvalue based detection has many advantages, such as it does not require knowledge on primary user signal or noise power level. However, most of the work on eigenvalue based detection methods presented in the literature rely on multiple sensing nodes or receiving antennas so that they cannot be directly applied to single antenna systems. In this paper, an effective PU signal detection method based on eigenvalue is proposed for a cognitive user equipped with a single receiving antenna. The proposed method utilizes the temporal smoothing technique to form a virtual multi-antenna structure. The maximum and minimum eigenvalues of the covariance matrix obtained by the virtual multi-antenna structure are used to detect PU signal. Compared with the previous work, the presented method offers a number of advantages over other recently proposed algorithms. Firstly, the presented approach makes use of power method to calculate the maximum and minimum eigenvalues, it has lower computational complexity since the eigenvalue decomposition processing is avoided. Secondly, it can reduce system overhead since single antenna is used instead of multiple antennas or sensing nodes. Finally, simulation results show that performance of the proposed method is close to that of maximum-minimum eigenvalue detection using multiple antennas.
Citation
Fulai Liu, Shouming Guo, and Yixiao Sun, "Primary User Signal Detection Based on Virtual Multiple Antennas for Cognitive Radio Networks," Progress In Electromagnetics Research C, Vol. 42, 213-227, 2013.
doi:10.2528/PIERC13061801
References

1. Federal Communications Commission "Spectrum policy task force report,", ET Docket No. 02-135, November 2002.
doi:10.1109/98.788210

2. Mitola, J. and G. Q. Maguire, "Cognitive radio: Making software radios more personal," IEEE Personal Communications, Vol. 6, No. 4, 13-18, August 1999.
doi:10.1109/SURV.2009.090109

3. Yucek, T. and H. Arslan, "A survey of spectrum sensing algorithms for cognitive radio applications," IEEE Communications Surveys & Tutorials, Vol. 11, No. 1, 116-130, First Quarter 2009.

4. Cabric, D., S. M. Mishra, and R. W. Brodersen, "Implementation issues in spectrum sensing for cognitive radios," Conference Record of the Thirty-eighth Asilomar Conference on Signals, Systems and Computers, Vol. 1, 772-776, 2004.
doi:10.1007/s11277-012-0519-4

5. Pratas, N., N. Marchetti, N. Rashmi Prasad, A. Rodrigues, and R. Prasad, "Adaptive counting rule for cooperative spectrum sensing under correlated environments," Wireless Personal Communications, Vol. 64, No. 1, 93-106, May 2012.
doi:10.1109/JSTSP.2010.2055537

6. Taricco, G., "Optimization of linear cooperative spectrum sensing for cognitive radio networks," IEEE Journal of Selected Topics in Signal Processing, Vol. 5, No. 1, 77-86, February 2011.
doi:10.2528/PIERC12021604

7. Liu, F. L., S. M. Guo, Q. P. Zhou, and R. Y. Du, "An effective wideband spectrum sensing method based on sparse signal reconstruction for cognitive radio networks," Progress In Electromagnetics Research C, Vol. 28, 99-111, 2012.

8. Zeng, Y. H. and Y. C. Liang, "Maximum-minimum eigenvalue detection for cognitive radio," Proceedings of the 18th International Symposium on Personal, Indoor and Mobile Radio Communications, 1165-1169, September 2007.
doi:10.1109/TCOMM.2009.06.070402

9. Zeng, Y. H. and Y. C. Liang, "Eigenvalue-based spectrum sensing algorithms for cognitive radio," IEEE Transactions on Communications, Vol. 57, No. 6, 1784-1793, June 2009.

10. Zeng, Y. H., L. K. Choo, and Y. C. Liang, "Maximum eigenvalue detection: Theory and application," IEEE International Conference on Communications, 5076-5080, 2008.

11. Zeng, Y. H. and Y. C. Liang, "Robust spectrum sensing in cognitive radio," IEEE 21st International Symposium on Personal, Indoor and Mobile Radio Communications Workshops, 129-134, 2010.
doi:10.1049/iet-com.2011.0506

12. Pillay, N. and H. J. Xu, "Blind eigenvalue-based spectrum sensing for cognitive radio networks," IET Communications, Vol. 6, No. 11, 1388-1396, July 2012.
doi:10.1109/JSTSP.2010.2066957

13. Kortun, A., T. Ratnarajah, M. Sellathurai, C. J. Zhong, and C. B. Papadias, "On the performance of eigenvalue-based cooperative spectrum sensing for cognitive radio," IEEE Journal of Selected Topics in Signal Processing, Vol. 5, No. 1, 49-55, February 2011.

14. Wang, S. and N. Rahnavard, "Eigenvalue-based cooperative spectrum sensing with finite samples/sensors," 2012 46th Annual Conference on Information Sciences and Systems, 1-5, 2012.
doi:10.1109/TMC.2012.59

15. Chowdhury, K. R., M. Di Felice, and I. F. Akyildiz, "TCP CRAHN: A transport control protocol for cognitive radio ad hoc networks," IEEE Transactions on Mobile Computing, Vol. 12, No. 4, 790-803, April 2013.

16. Lee, W. Y. and I. F. Akyildiz, "Spectrum-aware mobility management in cognitive radio cellular networks," IEEE Transactions on Mobile Computing, Vol. 11, No. 4, 529-542, April 2012.
doi:10.1016/j.sigpro.2009.08.013

17. Liu, F. L., J. K. Wang, and R. Y. Du, "Unitary-JAFE algorithm for joint angle-frequency estimation based on Frame-Newton method," Signal Processing, Vol. 90, No. 3, 809-820, 2010.
doi:10.1109/TASSP.1986.1164944

18. Tufts, D. W. and C. D. Melissinos, "Simple, effective computation of principal eigenvectors and their eigenvalues and application to high-resolution estimation of frequencies," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 34, No. 5, 1046-1053, October 1986.

19. Tulino, A. M. and S. Verdu, Random Matrix Theory and Wireless Communications, Now Publishers Inc., Hanover, MA, USA, 2004.
doi:10.1214/aos/1009210544

20. Johnstone, I. M., "On the distribution of the largest eigenvalue in principle components analysis," The Annals of Statistics, Vol. 29, No. 2, 295-327, 2001.

21. Bai, Z. D., "Methodologies in spectral analysis of large dimensional random matrices, a review," Statistica Sinica, Vol. 9, No. 3, 611-677, 1999.
doi:10.1007/BF02099545

22. Tracy, C. A. and H. Widom, "On orthogonal and symplectic matrix ensembles," Communications in Mathematical Physics, Vol. 177, No. 3, 727-754, 1996.