Vol. 38
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-03-13
Inline TE01δ Mode Dielectric-Resonator Filters with Controllable Transmission Zero for Wireless Base Stations
By
Progress In Electromagnetics Research Letters, Vol. 38, 101-110, 2013
Abstract
A method to control the transmission zero of TE01δ mode dielectric-resonator (DR) filters for wireless base stations is proposed. Instead of using folder structures, dedicated coupling probes, or extra cavities, as required by conventional techniques, transmission zeros are realized. The feeding probes, extended along ring dielectric resonators, are used to excite the TE01δ mode and introduce transmission zeros. By rotating the angle of feeding position, transmission zeros can be shifted to the lower or the upper stopband. Thus, TE01δ mode dielectric resonator filters with quasi-elliptic responses are realized with only iris coupling components. Based on this method, fourth-order inline TE01δ mode DR filters with different responses are designed and fabricated. Measured results confirm the predicted performance.
Citation
Xiao Ouyang, and Bo-Yong Wang, "Inline TE01δ Mode Dielectric-Resonator Filters with Controllable Transmission Zero for Wireless Base Stations," Progress In Electromagnetics Research Letters, Vol. 38, 101-110, 2013.
doi:10.2528/PIERL13012001
References

1. Kuo, J. -T. and S. -W. Lai, "New dual-band bandpass filter with wide upper rejection band," Progress In Electromagnetics Research, Vol. 123, 371-384, 2012.
doi:10.2528/PIER11112304

2. Weng, M.-H., S.-K. Liu, H.-W. Wu, and C.-H. Hung, "Stopband-extended balanced filters using both λ/4 and λ/2 SIRs with common-mode suppression and improved passband selectivity," Progress In Electromagnetics Research, Vol. 128, 215-228, 2012.

3. Chen, W.-Y., M.-H. Weng, S.-J. Chang, H. Kuan, and Y.-H. Su, "A new tri-band bandpass filter for GSM, WIMAX and ultra-wideband responses by using asymmetric stepped impedance resonators," Progress In Electromagnetics Research, Vol. 124, 365-381, 2012.
doi:10.2528/PIER11122010

4. Cohn, S. B., "Microwave bandpass filters containing high-Q dielectric resonators," IEEE Trans. Microw. Theory Tech., Vol. 16, No. 4, 210-218, 1968.
doi:10.1109/TMTT.1968.1126653

5. Saliminejad, R. and M. R. Ghafourifard, "A novel and accurate method for designing dielectric resonator filter," Progress In Electromagnetics Research B, Vol. 8, 293-306, 2008.
doi:10.2528/PIERB08070602

6. Wang, C. and K. A. Zaki, "Dielectric resonators and filters," IEEE Microwave Magazine, Vol. 8, No. 5, 115-127, 2007.
doi:10.1109/MMM.2007.903648

7. Fiedziuszko, S. J., I. C. Hunter, T. Itoh, et al. "Dielectric materials, devices, and Circuits," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 706-720, 2002.
doi:10.1109/22.989956

8. Liang, J.-F. and W. D. Blair, "High-Q TE01 mode DR filters for PCS wireless base stations," IEEE Trans. Microw. Theory Tech., Vol. 46, No. 12, 2493-2500, 1998.
doi:10.1109/22.739239

9. Wang, C., H.-W. Yao, K. A. Zaki, and R. R. Mansour, "Mixed modes cylindrical planar dielectric resonator filters with rectangular enclosure," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 12, 2817-2823, 1995.
doi:10.1109/22.475640

10. Liang, J. -F., K. A. Zaki, and A. E. Atia, "Mixed modes dielectric resonator filters," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 12, 2449-2454, 1994.
doi:10.1109/22.339780

11. Fiedziuszko, S. J., "Dielectric resonator design shrinks satellite filters and resonators," Microwave Systems News, Vol. 15, No. 9, 97-112, 1985.

12. Fiedziuszko, S. J., "Dual-mode dielectric resonator loaded cavity filters," IEEE Trans. Microw. Theory Tech., Vol. 30, No. 9, 1311-1316, 1982.
doi:10.1109/TMTT.1982.1131253

13. Zaki, K. A., C. Chen, and A. E. Atia, "Canonical and longitudinal dual-mode dielectric resonator filters without iris," IEEE Trans. Microw. Theory Tech., Vol. 35, No. 12, 1130-1135, 1987.
doi:10.1109/TMTT.1987.1133827

14. Bastioli, S. and R. V. Snyder, "In-line pseudoelliptic TE01δ mode dielectric resonator filters," IEEE MTT-S. Int. Microw. Symp. Dig., 1-3, Montreal, QC, Canada, 2012.

15. Macchiarella, G., "Synthesis of prototype filters with triplet sections starting from source and load," IEEE Microwave Wireless Compon. Lett., Vol. 12, No. 2, 42-44, 2002.
doi:10.1109/7260.982871