Vol. 168
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2020-11-21
PIER
Vol. 168, 133-143, 2020
download: 443
Dual-Mode Hyperspectral Bio-Imager with a Conjugated Camera for Quick Object-Selection and Focusing
Xinli Yao , Shuo Li and Sailing He
A dual-mode hyperspectral imager using field of view scanning needs no moving macro parts. It could work in dual-mode (macro imaging and micro imaging) and is equipped with a conjugated camera for quick object-selection and focusing. By adjusting the imaging lens and achieving the image clarity on the conjugated camera, we could find the correct location and focusing of the ROIs simultaneously instead of inefficiently checking the hyperspectral image after the whole scanning process. The whole system was applied to the study of spectral characteristics of blood oxygen in human hands and the microscopic identification of algae, showing a great potential of clinical and marine applications of our system.
2020-11-05
PIER
Vol. 168, 113-132, 2020
download: 693
Research Status and Prospects of Orbital Angular Momentum Technology in Wireless Communication
Feng Zheng , Yijian Chen , Siwei Ji and Gaoming Duan
It becomes more and more challenging to satisfy the long-term demand of transmission capacity in wireless networks if we limit our research within the frame of traditional electromagnetic wave characteristics (e.g., frequency, amplitude, phase and polarization). The potential of orbital angular momentum (OAM) for unleashing new capacity in the severely congested spectrum of commercial communication systems is generating great interest in wireless communication field. The OAM vortex wave/beam has different topological charges, which are orthogonal to each other. It provides a new way for multiplexing in wireless communications. Electromagnetic wave or synthetic beam carrying OAM has a spiral wavefront phase structure, which may provide a new degree of freedom or better orthogonality in spatial domain. In this paper, we introduce the fundamental theory of OAM. Then, OAM generation and reception methods are equally demonstrated. Furthermore, we present the latest development of OAM in wireless communication. We further discuss the controversial topic ``whether OAM provides a new degree of freedom'' and illustrate our views on the relationship between OAM and MIMO. Finally, we suggest some open research directions of OAM.
RESEARCH STATUS AND PROSPECTS OF ORBITAL ANGULAR MOMENTUM TECHNOLOGY IN WIRELESS COMMUNICATION
2020-10-15
PIER
Vol. 168, 87-111, 2020
download: 346
Multiple Scattering of Waves by Complex Objects Using Hybrid Method of T-Matrix and Foldy-Lax Equations Using Vector Spherical Waves and Vector Spheroidal Waves
Huanting Huang , Leung Tsang , Andreas Colliander , Rashmi Shah , Xiaolan Xu and Simon Yueh
In this paper, we develop numerical methods for using vector spherical and spheroidal waves in the hybrid method to calculate the multiple scattering of objects of complex shapes, based on the rigorous solutions of Maxwell equations in the form of Foldy-Lax multiple scattering equations (FL). The steps in the hybrid method are: (1) calculating the T-matrix of each single object using vector spherical/spheroidal waves and (2) vector spherical/spheroidal waves addition theorem. We utilize the commercial software HFSS to calculate the scattered fields of a complex object on the circumscribing sphere or spheroid for multiple incidences and polarizations. The T-matrix of spherical waves or spheroidal waves are then obtained from these scattered fields. To perform wave transformations (i.e. addition theorem) for vector spherical/spheroidal waves, we develop robust numerical methods. Numerical results are illustrated for T-matrices and numerical vector addition theorems.
MULTIPLE SCATTERING OF WAVES BY COMPLEX OBJECTS USING HYBRID METHOD OF T-MATRIX AND FOLDY-LAX EQUATIONS USING VECTOR SPHERICAL WAVES AND VECTOR SPHEROIDAL WAVES
2020-10-15
PIER
Vol. 168, 73-86, 2020
download: 347
Radiation Gauge Potential-Based Time Domain Integral Equations for Penetrable Regions
Thomas Edgar Roth and Weng Cho Chew
Potential-based integral equations are being explored to develop numerical methods that avoid low frequency breakdown issues and are better suited to couple to quantum physics computations. Important classes of quantum electrodynamics problems are typically formulated in the radiation gauge, leading to interest in efficient numerical solutions able to be performed directly in this gauge. This work presents time domain integral equations for penetrable regions that are developed in the radiation gauge. An appropriate marching-on-in-time discretization scheme is developed that fully conforms to the spatial and temporal Sobolev space properties of the integral equations. It is shown that following this approach leads to a discrete system with improved stability properties that produces accurate results down to very low frequencies. The accuracy and stability of this formulation at low frequencies are shown through numerical results.
RADIATION GAUGE POTENTIAL-BASED TIME DOMAIN INTEGRAL EQUATIONS FOR PENETRABLE REGIONS
2020-10-15
PIER
Vol. 168, 61-71, 2020
download: 439
Polarization Reconfigurable Slot-Fed Cylindrical Dielectric Resonator Antenna
Mahbubeh Esmaeili and Jean-Jacques Laurin
A new design for a cylindrical dielectric resonator antenna (DRA) with a capability of switching between circular, linear horizontal and linear vertical polarizations is introduced. The DRA, operating at the center frequency of 3.25 GHz, is fed by a microstrip line through two dog-bone slots. In this design, only two PIN diodes are employed as switching elements which significantly decreases the complexity of DC biasing circuits compared to existing designs. The PIN diodes are embedded in transformers connected to the feeding microstrip lines. This technique conveniently allows to make compensations for parasitic effects of the PIN diodes junction capacitors on the antenna matching bandwidth. The circular, linear horizontal and linear vertical polarizations have a bandwidth of 22%, 17% and 18%, respectively. The 3-dB axial ratio bandwidth for the circular polarization is 12%. The measured results obtained from prototyped antenna agree well with simulated results of the designed antenna system, which confirms the validity of the design process.
POLARIZATION RECONFIGURABLE SLOT-FED CYLINDRICAL DIELECTRIC RESONATOR ANTENNA
2020-10-03
PIER
Vol. 168, 39-59, 2020
download: 562
Fundamental Implicit FDTD Schemes for Computational Electromagnetics and Educational Mobile Apps (Invited Review)
Eng Leong Tan
This paper presents an overview and review of the fundamental implicit finite-difference time-domain (FDTD) schemes for computational electromagnetics (CEM) and educational mobile apps. The fundamental implicit FDTD schemes are unconditionally stable and feature the most concise update procedures with matrix-operator-free right-hand sides (RHS). We review the developments of fundamental implicit schemes, which are simpler and more efficient than all previous implicit schemes having RHS matrix operators. They constitute the basis of unification for many implicit schemes including classical ones, providing insights into their inter-relations along with simplifications, concise updates and efficient implementations. Based on the fundamental implicit schemes, further developments can be carried out more conveniently. Being the core CEM on mobile apps, the multiple one-dimensional (M1-D) FDTD methods are also reviewed. To simulate multiple transmission lines, stubs and coupled transmission lines efficiently, the M1-D explicit FDTD method as well as the unconditionally stable M1-D fundamental alternating direction implicit (FADI) FDTD and coupled line (CL) FDTD methods are discussed. With the unconditional stability of FADI methods, the simulations are fast-forwardable with enhanced efficiency. This is very useful for quick concept illustrations or phenomena demonstrations during interactive teaching and learning. Besides time domain, many frequency-domain methods are well-suited for further developments of useful mobile apps as well.
FUNDAMENTAL IMPLICIT FDTD SCHEMES FOR COMPUTATIONAL ELECTROMAGNETICS AND EDUCATIONAL MOBILE APPS (INVITED REVIEW)
2020-10-02
PIER
Vol. 168, 31-38, 2020
download: 462
A Novel Millimeter-Wave Backward to Forward Scanning Periodic Leaky-Wave Antenna Based on Two Different Radiator Types
Yiming Zhang , Hui Liu , Chenyang Meng , Yuxin Lin , Yuan Zhang , Erik Forsberg and Sailing He
A periodic millimeter wave leaky-wave antenna (LWA), which has two different types of radiator elements that enable backward to forward radiation, is proposed. The unit-cell of the LWA consists of two quarter-wavelength microstrip lines and two corrugated substrate integrated waveguide (CSIW) cells with S-shaped quarter-wavelength open-circuit stubs. In addition to two parallel edge radiators, a single etched transverse slot with a tilt angle acts as an ancillary radiator, which ensures impedance matching in a large frequency range and achieves the backward to forward scanning. We analyze the proposed design through simulations, characterize a fabricated prototype and find it to have good radiation properties including broad impedance bandwidth. The measurement results show a high peak gain from 11 to 15.8 dBi with a large scanning angle range from -34° to +22° in the K-band operating frequency range.
A NOVEL MILLIMETER-WAVE BACKWARD TO FORWARD SCANNING PERIODIC LEAKY-WAVE ANTENNA BASED ON TWO DIFFERENT RADIATOR TYPES
2020-08-30
PIER
Vol. 168, 25-30, 2020
download: 628
Second-Order Nonlinear Susceptibility Enhancement in Gallium Nitride Nanowires (Invited)
Kangwei Wang , Haoliang Qian , Zhaowei Liu and Paul K. L. Yu
We report the second-harmonic generation (SHG) from single GaN nanowire. The diameter of the GaN nanowire varies from 150 to 400 nm. We present a model for the SHG process in the GaN nanowire; the analysis shows quantitatively that the SHG is dominated by its surface area. The effective second order nonlinear optical susceptibility (χ(2)eff) increases as the diameter of the GaN nanowire decreases. For 150-nm diameter GaN nanowire, χ(2)eff reaches 136 pm/V.
SECOND-ORDER NONLINEAR SUSCEPTIBILITY ENHANCEMENT IN GALLIUM NITRIDE NANOWIRES (INVITED)
2020-08-22
PIER
Vol. 168, 15-23, 2020
download: 779
Superscattering of Light in Refractive-Index Near-Zero Environments
Chan Wang , Chao Qian , Hao Hu , Lian Shen , Zuo Jia Wang , Huaping Wang , Zhiwei Xu , Baile Zhang , Hongsheng Chen and Xiao Lin
Enhancing the scattering of light from subwavelength structures is of both fundamental and practical significance. While the scattering cross section from each channel cannot exceed the single-channel limit, it is recently reported that the total cross section can far exceed this limit if one overlaps the contribution from many channels. Such a phenomenon about enhancing the scattering from subwavelength structures in free space is denoted as the superscattering in some literature. However, the scatterer in practical scenarios is not always in free space but may be embedded in environments with non-unity refractive index n. The influence of environments on the superscattering remains elusive. Here the superscattering from subwavelength structures in the isotropic environment with near-zero index are theoretically investigated. Importantly, a smaller n can lead to a larger total cross section for superscattering. The underlying mechanism is that a smaller n can give rise to a larger single-channel limit. Our work thus indicates that the scattering from subwavelength structures can be further enhanced if one simultaneously maximizes the single-channel limit and the contribution from many channels.
SUPERSCATTERING OF LIGHT IN REFRACTIVE-INDEX NEAR-ZERO ENVIRONMENTS
2020-08-20
PIER
Vol. 168, 1-13, 2020
download: 813
Classical and Quantum Electromagnetic Interferences: What Is the Difference?
Dong-Yeop Na and Weng Cho Chew
The zeroing of second order correlation functions between output fields after interferences in a 50/50 beam splitter has been accepted decades-long in the quantum optics community as an indicator of the quantum nature of lights. But, a recent work [1] presented some notable discussions and experiments that classical electromagnetic fields can still exhibit the zero correlation under specific conditions. Here, we examine analytically classical and quantum electromagnetic field interferences in a 50/50 beam splitter in the context of the second order correlation function for various input conditions. Adopting the Heisenberg picture in quantum electromagnetics, we examine components of four-term interference terms in the numerator of second order correlation functions and elucidate their physical significance. As such, we reveal the fundamental difference between the classical and quantum interference as illustrated by the Hong-Ou-Mandel (HOM) effect. The quantum HOM effect is strongly associated with: (1) the commutator relation that does not have a classical analogue; (2) the property of Fock states needed to stipulate the one-photon quantum state of the system; and (3) a destructive wave interference effect. Here, (1) and (2) imply the indivisibility of a photon. On the contrary, the classical HOM effect requires the presence of two destructive wave interferences without the need to stipulate a quantum state.
CLASSICAL AND QUANTUM ELECTROMAGNETIC INTERFERENCES: WHAT IS THE DIFFERENCE?