Vol. 35
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
0000-00-00
Dyadic Green's Functions in Multilayered Stratified Gyroelectric Chiral Media
By
, Vol. 35, 53-81, 2002
Abstract
To characterize electromagnetic waves in complex media has been an important topic because of its useful applications and scientific significance of its physical mechanism. Dyadic Green's functions, as a mathematical kernel or a dielectric medium response, relate directly the radiated electromagnetic fields and the source distribution. In terms of the vector wave functions in cylindrical coordinates, dyadic Green's functions in a unbounded and a planar, multilayered gyroelectric chiral media are formulated. By use of the scattering superposition principle and taking the multiple reflections into account, a general representation of the Green's dyadics is obtained. Furthermore, the scattering coefficients of the Green's dyadics are determined from the boundary conditions at each interface and are expressed in a greatly compact form of recurrence matrices. In the formulation of the Green's dyadics and their scattering coefficients, three cases are considered, i.e., the current source is impressed in (1) the first, (2) the intermediate, and (3) the last regions, respectively. Although the dyadic Green's functions for a unbounded gyroelectric chiral medium has been reported in the literature, some of the results are incorrect. As compared to the existing results, the current work basically contributes (1) a correct form of dyadic Green's function for a unbounded gyroelectric chiral medium, (2) the general representation of the dyadic Green's functions for a multi-layered gyroelectric chiral medium, and (3) a convincible and direct derivation of the irrotational Green's dyadic.
Citation
L.-W. Li, S. B. Yeap, M.-S. Leong, Tat Yeo, and P.-S. Kooi, "Dyadic Green's Functions in Multilayered Stratified Gyroelectric Chiral Media," , Vol. 35, 53-81, 2002.
doi:10.2528/PIER01042401
References

1. Tai, C. T., Dyadic Green’s Functions in Electromagnetic Theory, 2nd edition, IEEE Press, Piscataway, New Jersey, 1994.

2. Collin, R. E., Field Theory of Guided Waves, 2nd edition, IEEE Press, Piscataway, New Jersey, 1991.

3. Kong, J. A., Electromagnetic Wave Theory, 3rd edition, John Wiley & Sons, New York, 1990.

4. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.

5. Chew, W. C., "Some observations on the spatial and eigenfunction representations of dyadic Green’s functions," IEEE Trans. Antennas Propagat., Vol. 37, No. 10, 1322-1327, Oct. 1989.

6. Cavalcante, G. P. S., D. A. Rogers, and A. J. Giardola, "Analysis of the electromagnetic wave propagation in multilayered media using dyadic Green’s function," Radio Sci., Vol. 17, 503-508, 1982.

7. Pathak, P. H., "On the eigenfunction expansion of the electric and magnetic field dyadic Green’s functions," IEEE Trans. Antennas Propagat., Vol. 31, 837-846, 1983.

8. Pearson, L. W., "On the spectral expansion of the electric and magnetic dyadic Green’s functions in cylindrical harmonics," Radio Sci., Vol. 18, 166-174, 1983.

9. Li, L. W., "Dyadic Green’s function of inhomogeneous ionospheric waveguide," J. Electromagn. Waves Applic., Vol. 6, No. 1, 53-70, 1992.

10. Li, L. W., P. S. Kooi, M. S. Leong, and T. S. Yeo, "Electromagnetic dyadic Green’s function in spherically multilayered media," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 12, 2302-2310, Part A, December 1994.

11. Li, L. W., P. S. Kooi, M. S. Leong, and T. S. Yeo, "On the eigenfunction expansion of dyadic Green’s function in planarly stratified media," J. Electromagn. Waves Applic., Vol. 8, No. 6, 663-678, June 1994.

12. Li, L. W., P. S. Kooi, M. S. Leong, and T. S. Yeo, "Alternative formulations of electric dyadic Green functions of the first and second kinds for an infinite rectangular waveguide with a load," Microwave Opt. Technol. Lett., Vol. 8, No. 2, 98-102, February 1995.

13. Li, L. W., P. S. Kooi, M. S. Leong, and T. S. Yeo, "A general expression of dyadic Green’s function in radially multilayered chiral media," IEEE Trans. Antennas Propagat., Vol. 43, No. 3, 232-238, March 1995.

14. Li, L. W., P. S. Kooi, M. S. Leong, and T. S. Yeo, "Analytic representation of scattering dyadic Green’s functions’ coefficients for cylindrically multilayered chiral media," J. Electromagn. Waves Applic., Vol. 9, No. 9, 1207-1221, September 1995.

15. Li, L. W., P. S. Kooi, M. S. Leong, T. S. Yeo, and S. L. Ho, "Input impedance of a probe-excited semi-infinite rectangular waveguide with arbitrary multilayered loads: Part I–Dyadic Green’s functions," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 7, 1559-1566, Part A, July 1995.

16. Li, L. W., P. S. Kooi, M. S. Leong, T. S. Yeo, and S. L. Ho, "On the eigenfunction expansion of dyadic Green’s functions in rectangular cavities and waveguides," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 3, 700-702, March 1995.

17. Kong, J. A., "Electromagnetic field due to dipole antennas over stratified anisotropic medium," Geophysics, Vol. 37, 985-996, 1972.

18. Kong, J. A., "Theorems of bianisotropic media," Proc. IEEE, Vol. 60, 1036-1046, 1972.

19. Ali, S. M. and S. F. Mahmoud, "Electromagnetic fields of buried sources in stratified anisotropic media," IEEE Trans. Antennas Propagat., Vol. 27, 671-678, 1979.

20. Lee, J. K. and J. A. Kong, "Dyadic Green’s functions for layered anisotropic medium," Electromagnetics, Vol. 3, 111-130, 1983.

21. Lee, J. K. and J. A. Kong, "Active microwave remote sensing of an anisotropic random medium layer," IEEE Trans. Geosci. Remote Sensing, Vol. 23, 910-923, 1985.

22. Lee, J. K. and J. A. Kong, "Passive microwave remote sensing of an anisotropic random medium layer," IEEE Trans. Geosci. Remote Sensing, Vol. 23, No. 6, 924-932, Nov. 1985.

23. Krowne, C. M., "Determination of the Green’s function in the spectral domain using a matrix method: Application to radiators immersed in a complex anisotropic layered medium," IEEE Trans. Antennas Propagat., Vol. 34, 247-253, 1986.

24. Krowne, C. M., "Relationships for Green’s function spectral dyadics involving anisotropic imperfect conductors imbedded in layered anisotropic media," IEEE Trans. Antennas Propagat., Vol. 37, No. 9, 1207-1211, Sept. 1989.

25. Monzon, J. C., "Three-dimensional field expansion in the most general rotationally symmetric anisotropic material: Application to scattering by a sphere," IEEE Trans. Antennas Propagat., Vol. 37, No. 6, 728-735, June 1989.

26. Oldano, C., "Electromagnetic-wave propagation in anisotropic stratified media," Physical Review A, Vol. 40, 6014-6020, Nov. 1989.

27. Habashy, T. M., S. M. Ali, J. A. Kong, and M. D. Grossi, "Dyadic Green’s functions in a planar stratified, arbitrarily magnetized linear plasma," Radio Science, Vol. 26, No. 3, 701-715, May–June 1991.

28. Kaklamani, D. I. and N. K. Uzunoglu, "Radiation of a dipole in an infinite triaxial anisotropic medium," Electromagnetics, Vol. 12, 231-245, 1992.

29. Ren, W., "Contributions to the electromagnetic wave theory of bounded homogeneous anisotropic media," Physical Rev. E, Vol. 47, No. 1, 664-673, Jan. 1993.

30. Weiglhofer, W. S. and I. V. Lindell, "Analytic solution for the dyadic Green’s function of a nonreciprocal uniaxial bianisotropic medium," Archiv f¨ur Elektronik und ¨ Ubertragungstechnik., Vol. 48, No. 2, 116-119, 1994.

31. Lindell, I. V., "Decomposition of electromagnetic sources in axially chiral uniaxial anisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 10, No. 1, 51-59, 1996.

32. Cheng, D. and W. Ren, "Green dyadics in reciprocal uniaxial bianisotropic media by by cylindrical vector wave functions," Physics Review E, Vol. 54, No. 3, 2917-2924, Sept. 1994.

33. Uzunoglu, N. K., P. G. Cottis, and J. G. Fikioris, "Excitation of electromagnetic waves in a gyroelectric cylinder," IEEE Trans. Antenna and Propagat., Vol. 33, 90-99, 1987.

34. Barkeshli, S., "Eigenvalues and eigenvectors of gyroelectric media," IEEE Trans. Antennas Propagat., Vol. 40, 340-344, 1992.

35. Barkeshli, S., "Electromagnetic dyadic Green’s function for multilayered symmetric gyroelectric media," Radio Science, Vol. 28, No. 1, 23-36, Jan.–Feb. 1993.

36. Weiglhofer, W. S., "Dyadic Green’s function representation in electrically gyrotropic media," AEU, Archiv f¨ur Elektronik und ¨ Ubertragungstechnik: Electronics and Communication, Vol. 47, No. 3, 125-130, May 1993.

37. Cheng, D., "Field representation in a gyroelectric chiral media by cylindrical vector wave functions," Journal of Physics D, Vol. 28, 246-251, 1995.

38. Cheng, D., "Eigenfunction expansion of the dyadic Green’s function in a gyroelectric chiral medium by cylindrical vector wave functions," Physics Review E, Vol. 55, No. 2, 1950-1958, Feb. 1997.

39. Yin, W., P. Li, and W. Wang, "The theory of dyadic Green’s function and the radiation characteristics of sources in stratified bi-isotropic media," Progress In Electromagnetics Research (Series), J. A. Kong (Ed.), Vol. 9, 117–136, EMW Publishing, Boston, 1994.

40. Li, L. W., M. S. Leong, T. S. Yeo, and P. S. Kooi, "Comments on ‘eigenfunction expansion of the dyadic Green’s function in a gyroelectric chiral medium by cylindrical vector wave functions’," Accepted by Physical Review E, April, 1998 and to appear in March 1999.

41. Cheng, D., Y.-Q. Jin, and W. Ren, "Green dyadics in gyroelectric chiral medium by cylindrical vector wave functions," Int. J. Appl. Electromagn. Mechanics, Vol. 7, 213-226, 1996.

42. Cheng, D. and Y. M. M. Antar, "Cylindrical vector wave functions and applications in a source-free uniaxial chiral medium," Physics Review E, Vol. 56, No. 6, 7273-7287.

43. Cheng, D., "Vector-wave-function theory of uniaxial bianisotropic semiconductor material," Physics Review E, Vol. 56, No. 2, 2321-2324, August 1997.

44. Cheng, D., "Transient electromagnetic field of dipole source in chiral medium," Int. J. Appl. Electromagn. Mechanics, Vol. 8, 179-183, 1997.

45. Cheng, D., W. Ren, and Y.-Q. Jin, "Green dyadics in uniaxial bianisotropic-ferrite medium by cylindrical vector wavefunctions," J. Phys. A: Math. Gen., Vol. 30, 573-585, 1997.

46. Ren, W., "Dyadic Green’s functions and dipole radiations in layered chiral media," J. Appl. Phys., Vol. 75, No. 1, 30-35, Jan. 1994.