Vol. 11
Latest Volume
All Volumes
PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2009-12-11
Fade Margins Prediction for Broadband Fixed Wireless Access (BFWA) from Measurements in Tropics
By
Progress In Electromagnetics Research C, Vol. 11, 199-212, 2009
Abstract
The fade margins for 15, 23, 26 and 38 GHz frequency bands are predicted based on one-minute rain rate measurements for four years at Universiti Teknologi Malaysia (UTM) Skudai and the specifications of the given four MINI-LINKS. The availabilities of terrestrial microwave links are also investigated based on rain attenuation data collected from seven operational microwave links at 15 GHz and one at 23 GHz for more than one year. The fade margins for all eight links are measured based on the rain attenuation data collected with different hop lengths. In this paper, the feasibility to design outage-free wireless broadband radio link also highlighted. These results will contribute to the better design of outage-free Broadband Fixed Wireless Access (BFWA) system such as, Local Multipoint Distribution Service (LMDS) and IEEE802.16 in tropical regions.
Citation
Md. Rafi Ul Islam, Tharek Bin Abdul Rahman, Sharul Kamal Bin Abd Rahim, Kusay Faisal Al-tabatabaie, and Amuda Yusuf Abdulrahman, "Fade Margins Prediction for Broadband Fixed Wireless Access (BFWA) from Measurements in Tropics," Progress In Electromagnetics Research C, Vol. 11, 199-212, 2009.
doi:10.2528/PIERC09103006
References

1. Bose, R., "Improving capacity in LMDS networks using trellis coded modulation," EURASIP J. Wireless Commun. Networking, Vol. 2, 365-373, Nov. 2004.

2. Nodbotten, A., "LMDS systems and their application," IEEE Communications Magazine, Vol. 38, No. 6, 150-154, Jun. 2000.
doi:10.1109/35.846087

3. IEEE 802.16 Working Group web site. http://WirelessMAN.org.

4. Mehmet, S., T. T. Kuran, and F. Alagoz, "A survey on emerging broadband wireless access technologies,", Science Direct, 2006.

5. Mandeep, J. S. and J. E. Allnutt, "Rain attenuation predictions at ku-band in south east asia countries," Progress In Electromagnetics Research, PIER 76, 65-74, 2007.

6. Choi, Y. S., J. H. Lee, and J. M. Kim, "Rain attenuation measurements of the Koreasat beacon signal on 12 GHz," Climatic Parameters in Radiowave Propagation Prediction, 208-211, CLIMPARA'98, Ottawa, Canada, 1997.

7. Fedi, F., "Prediction of attenuation due to rainfall on terrestrial links," Radio Science, Vol. 16, No. 5, 731-743, Sep.-Oct. 1981.
doi:10.1029/RS016i005p00731

8. Islam, M. R., J. Chebil, and T. A. Rahman, "Review of rain attenuation studies for communication systems operating in tropical regions," Proc. IEEE Malaysia International Conference on Communications, S15.9.1-4, 1997.

9. Characteristics of Precipitation for Propagation Modelling, Recommendation ITU-R P.837-4, ITU-R P Sers., ITU-R, Int. Telecomm. Union, 2003.

10. Anderson, H. R., Fixed Broadband Wireless System Design, 127-164, Wiley, Chichester, 2003.
doi:10.1002/0470861290.ch4

11. Ojo, J. S., M. O. Ajewole, and S. K. Sarkar, "Rain rate and rain attenuation prediction for satellite communication in Ku and Ka bands over nigeria," Progress In Electromagnetics Research B, Vol. 5, 207-223, 2008.
doi:10.2528/PIERB08021201

12. Propagation data and prediction methods required for the design of terrestrial line-of-sight systems, ITU-R Rec. P.530-12, 02/2007.

13. Propagation data and prediction methods required for the design of Earth-space telecommunication systems, ITU-R Rec. P.618-9, 08/2007.

14. Specific attenuation model for rain for use in prediction methods, ITU-R Rec. P.838-3, 03/2005.

15. Freeman, R. L., Radio System Design for Telecommunication, 3rd edition, A Wiley Interscience Publication, John Wiley & Sons Inc, 2007.

16. Arnold, H. W., D. C. Cox, and A. J. Rustako, "Rain attenuation at 10-30 GHz along earth-space paths: Elevation angle, frequency, seasonal, and diurnal effects," IEEE Transactions and Communications, Vol. 29, No. 5, 716-721, May 1981.
doi:10.1109/TCOM.1981.1095030

17. Paraboni, A., G. Masini, and A. Elia, "The effect of precipitation on microwave LMDS networks performance analysis using a physical rain cell model," IEEE J. Select. Areas Commun., Vol. 20, 615-619, Apr. 2002.
doi:10.1109/49.995520

18. Jennifer, P., L. J. Ippolito, Jr, S. Horan, and J. Feil, "Four years of experimental results from the new mexico ACTS Propagation terminal at 20.185 and 27.505 GHz," IEEE Journal on Selected Areas in Communications, Vol. 17, No. 2, 153-163, Feb. 1999.
doi:10.1109/49.748779

19. Mandeep, S. J. S., S. I. S. Hassan, M. F. Ain, F. Ghani, I. Kiyoshi, T. Kenji, and I. Mitsuyoshi, "Earth-to-space improved model for rain attenuation prediction at Ku-band," American Journal of Applied Sciences, Vol. 3, No. 8, 1967-1969, 2006.
doi:10.3844/ajassp.2006.1967.1969

20. Manabe, T. and T. Yashida, "Rain attenuation characteristics on radio links," IEEE Proceedings, 77-80, 1995.