Vol. 87
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-10-27
Dual Beam Synthesis Using Element Position Perturbations and the G3-GA Algorithm
By
Progress In Electromagnetics Research, Vol. 87, 43-61, 2008
Abstract
The position perturbations of linear antenna elements are used for designing non-uniformly spaced reconfigurable antennas radiating with multiple pattern such that the same amplitude distribution and perturbed positions produces either a pencil or a flat topped beam, the difference being dependent upon phase distribution of the array. The perturbation method consists of inducing small perturbations in the element positions of a linear array to obtain the desired patterns and offer the flexibility of simple design and is similar to other adaptive techniques like phase only or phase/amplitude synthesis. The problem of finding the element position perturbations is treated as a non linear problem and has been solved using a the generalized generation gap steady state genetic algorithm (G3-GA) using parent centric crossover. In the G3-GA approach the population diversity versus selection pressure problem considers both the parent selection and the replacement plans of GA. The positionphase synthesis method using the G3-GA approach is compared with the G3-GA phase-only synthesis technique. It is seen that, an optimal set of element-perturbed positions in a constrained position range with uniform amplitude, unequally spaced elements with unequal phases has the potential to overcome the design challenge of phase only syntheses that uses a larger number of elements to get the same desired side lobe level. Further when the main beam is scanned it is found that the proposed method can maintain a sidelobe level without distortion during beam steering for the angular positions studied.
Citation
Sevoor Meenakshisund Vaitheeswaran, "Dual Beam Synthesis Using Element Position Perturbations and the G3-GA Algorithm," Progress In Electromagnetics Research, Vol. 87, 43-61, 2008.
doi:10.2528/PIER08091601
References

1. Compton, Jr., R. T., Adaptive Antennas, Concepts and Performances, Englewood Cliffs, Prentice Hall, 1988.

2. Kumar, B. P. and G. R. Brenner, "Design of unequally spaced arrays for improved performance," IEEE Trans. Antennas Propag., Vol. 47, No. 32, 511-523, Mar. 1999.
doi:10.1109/8.768787

3. Bae, J.-H., K.-T. Kim, J.-H. Lee, H.-T. Kim, and J.-I. Choi, "Design of steerable non-uniform linear array geometry for sidelobe reduction," Microwave and Optical Technology Letters, Vol. 36, No. 5, 363-367, Mar. 2003.
doi:10.1002/mop.10765

4. Unz, H., "Linear arrays with arbitrarily distributed elements," IEEE Trans. Antennas Propag., Vol. 8, No. 2, 222-223, Mar. 1960.
doi:10.1109/TAP.1960.1144829

5. Harrington, R. F., "Sidelobe reduction by nonuniform element spacing," IEEE Trans. Antennas Propag., Vol. 9, No. 2, 187, Mar. 1961.
doi:10.1109/TAP.1961.1144961

6. Miller, E. K. and D. M. Goodman, "A pole zero modelling approach to linear array synthesis. I. The unconstrained solution," Radio Sci., Vol. 18, 57-69, Jan.-Feb. 1983.
doi:10.1029/RS018i001p00057

7. Mailloux, R. J. and E. Cohen, "Statistically thinned arrays with quantized element weights," IEEE Trans. Antennas Propag., Vol. 39, 436-447, Apr. 1991.
doi:10.1109/8.81455

8. Lo, Y. T. and S. W. Lee, "A study of space-tapered arrays," IEEE Trans. Antennas Propag., Vol. 14, 22-30, Jan. 1966.
doi:10.1109/TAP.1966.1138612

9. Mahanti, G. K., N. Pathak, and P. Mahanti, "Synthesis of thinned linear antenna arrays with fixed sidelobe level using real coded genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 319-328, 2007.
doi:10.2528/PIER07061304

10. Donelli, M., S. Caorsi, F. DeNatale, M. Pastorino, and A. Massa, "Linear antenna synthesis with a hybrid genetic algorithm," Progress In Electromagnetics Research, Vol. 49, 1-22, 2004.
doi:10.2528/PIER03121301

11. Babayigit, B., A. Akdagli, and K. Guney, "A clonal selection algorithm for null synthesizing of linear antenna arrays by amplitude control," Journal of Electromagnetic Waves and Applications, Vol. 20, 1007-1020, 2006.
doi:10.1163/156939306776930222

12. Guney, K. and M. Onay, "Amplitude-only pattern nulling of linear antenna arrays with the use of bees algorithm," Progress In Electromagnetics Research, Vol. 70, 21-36, 2007.
doi:10.2528/PIER07011204

13. Haupt, L. R., "Phase-only adaptive nulling with a genetic algorithm," IEEE Trans. Antennas Propag., Vol. 45, No. 6, 1009-1015, 1997.
doi:10.1109/8.585749

14. Ares, F., J. A. Rodriguez, E. Villanueva, and S. R. Rengarajan, "Genetic algorithms in the design and optimization of antenna array patterns," IEEE Trans. Antennas Propag., Vol. 47, 506-510, 1999.
doi:10.1109/8.768786

15. Dawoud, M. and M. Nuruzzaman, "Null steering in rectangular planer arrays by amplitude control using genetic algorithms," Int. J. Electronics, Vol. 87, No. 12, 1473-1484, 2000.
doi:10.1080/00207210050192498

16. Chung, Y. C. and R. L. Haupt, "Amplitude and phase adaptive nulling with a genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 14, 631-649, 2000.
doi:10.1163/156939300X01337

17. Guney, K. and A. Akdagli, "Null steering of linear antenna arrays using modified tabu search algorithm," Progress In Electromagnetics Research, Vol. 33, 167-182, 2001.
doi:10.2528/PIER00121402

18. Lee, K. C. and J. Y. Jhang, "Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2001-2012, 2006.
doi:10.1163/156939306779322747

19. Boeringer, D. W. and D. H. Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Trans. Antennas Propag., Vol. 52, 771-779, 2004.
doi:10.1109/TAP.2004.825102

20. Chen, T. B., Y. L. Dong, Y. C. Jiao, and F. S. Zhang, "Synthesis of circular antenna array using crossed particle swarm optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, 1785-1795, 2006.
doi:10.1163/156939306779292273

21. Akdagli, A., K. Guney, and D. Karaboga, "Pattern nulling of linear antenna arrays by controlling only the element positions with the use of improved touring ant colony optimization algorithm," Journal of Electromagnetic Waves and Applications, Vol. 16, 1423-1441, 2002.
doi:10.1163/156939302X00066

22. Akdagli, A., K. Guney, and B. Babayigit, "Clonal selection algorithm for design of reconfigurable antenna array with discrete phase shifters," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 215-227, 2007.
doi:10.1163/156939307779378808

23. Durr, M., A. Trastoy, and F. Ares, "Multiple-pattern linear antenna arrays with single prefixed amplitude distributions: Modified Woodward-Lawson synthesis," Electronics Letters, Vol. 36, No. 16, 1345-1346, 2000.
doi:10.1049/el:20000980

24. Bucci, O. M., G. Mazzarella, and G. Panariello, "Reconfigurable arrays by phase-only control," IEEE Trans. Antennas and Propag., Vol. 39, No. 7, 919-925, 1991.
doi:10.1109/8.86910

25. Gies, D. and Y. Rahmat-Samii, "Particle swarm optimization for reconfigurable phase differentiated array design," Microwave and Optical Technology Letters, Vol. 38, 168-175, 2003.
doi:10.1002/mop.11005

26. Chakrabarty, A., B. N. Das, and G. S. Sanyal, "Beam shaping using nonlinear phase distribution in a uniformly spaced array," IEEE Trans. Antennas and Propag., Vol. 30, 1031-1034, 1982.
doi:10.1109/TAP.1982.1142917

27. Baskar, S., A. Alphones, and P. N. Suganthan, "Genetic algorithm based design of a reconfigurable antenna array with discrete phase shifter," Microwave and Optical Technology Letters, Vol. 45, 461-465, 2005.
doi:10.1002/mop.20853

28. Trastoy, A., Y. Rahmat-Samii, F. Ares, and E. Moreno, "Two pattern linear array antenna: synthesis and analysis of tolerance," IEE Proc. Microw. Antennas Propag., Vol. 151, 127-130, 2004.
doi:10.1049/ip-map:20040175

29. Diaz, X., J. A. Rodriguez, F. Ares, and E. Moreno, "Design of phase-differentiated multiple-pattern antenna arrays," Microwave and Optical Technology Letters, Vol. 26, 52-53, 2000.
doi:10.1002/(SICI)1098-2760(20000705)26:1<52::AID-MOP16>3.0.CO;2-0

30. Mahanti, G. K., A. Chakraborty, and S. Das, "Design of fully digital controlled reconfigurable array antennas with fixed dynamic range ratio," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 97-106, 2007.
doi:10.1163/156939307779391768

31. Shore, R., "Nulling at symmetric pattern location with phase only weight control," IEEE Trans. Antennas and Propag., Vol. 32, No. 5, 530-533, 1984.
doi:10.1109/TAP.1984.1143360

32. Trastoy, A. and F. Ares, "Phase-only control of antenna sum patterns," Progress In Electromagnetics Research, Vol. 30, 47-57, 2001.
doi:10.2528/PIER00012401

33. Shore, R. A., "Nulling at symmetric pattern location with phase only weight control," IEEE Trans. Antennas Propag., Vol. 32, 530-533, 1984.
doi:10.1109/TAP.1984.1143360

34. Tennant, A., M. M. Dawoud, and A. P. Anderson, "Array pattern nulling by element position perturbations using a genetic algorithm," Electronics Letters, Vol. 30, 174-176, 1994.
doi:10.1049/el:19940139

35. Deb, K., A. Anand, and D. Joshi, "A computationally efficient evolutionary algorithm for real-parameter optimization," KanGAL Report, 2002003.