Vol. 141
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2024-02-04
Synthesis and Characterization of Polymer (PDMS-FE3O4) Magneto-Dielectric Material Based on Complementary Double Split Ring Resonator
By
Progress In Electromagnetics Research C, Vol. 141, 79-87, 2024
Abstract
In this paper, a comparison microwave method between Transmission and Reflection using a Coaxial Cable and complimentary double split ring resonator (CDSRR) for characterization of magneto-dielectric material is proposed. This method enables the determination of both relative permittivity and permeability of magneto-dielectric material. The CDSRR resonates at 3.46 GHz with a quality factor of 127 in unloaded condition. To determine the effects of permittivity and permeability on the shift of resonant frequency, the electric and magnetic fields are localized in two separate zones in the CDSRR sensor. Prediction formulas are proposed to extract the value of real permittivity and permeability from S21 parameter. For Transmission/Reflection Method, to extract the dielectric and magnetic properties, Nicolson-Ross-Weir (NRW) are used. The prototypes of proposed sensors are fabricated on a ROGERS 3003 and tested for validation of their functionality. A good agreement between the measured data using Transmission/Reflection Method and CDSRR sensor is observed.
Citation
Fatin Hamimah Ikhsan, Yee See Khee, Samsul Haimi Dahlan, Fahmiruddin Esa, and Vahid Nayyeri, "Synthesis and Characterization of Polymer (PDMS-FE3O4) Magneto-Dielectric Material Based on Complementary Double Split Ring Resonator," Progress In Electromagnetics Research C, Vol. 141, 79-87, 2024.
doi:10.2528/PIERC23091402
References

1. Adhiyoga, Yohanes Galih, Siti Fauziyah Rahman, Catur Apriono, and Eko Tjipto Rahardjo, "Magneto-dielectric properties of PDMS-magnetite composite as a candidate for compact microstrip antennas in the C-band 5G frequency," Journal of Materials Science-Materials in Electronics, Vol. 32, No. 8, 11312-11325, Apr. 2021.
doi:10.1007/s10854-021-05802-z

2. Alqadami, Abdulrahman S. M., Beadaa Mohammed, Konstanty S. Bialkowski, and Amin Abbosh, "Fabrication and characterization of flexible polymer iron oxide composite substrate for the imaging antennas of wearable head imaging systems," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1364-1368, Aug. 2018.
doi:10.1109/LAWP.2018.2841879

3. Muhamad, Wan Asilah Wan, Razali Ngah, Mohd Faizal Jamlos, Ping Jack Soh, Mohd Tarmizi Ali, and Adam Narbudowicz, "Bandwidth enhancement of a multilayered polymeric comb array antenna for millimeter-wave applications," Applied Physics A-Materials Science & Processing, Vol. 123, No. 1, 1-4, Jan. 2017.
doi:10.1007/s00339-016-0677-4

4. Zheng, Zongliang, "Performance based on magneto-dielectric ferrite materials," IEEE Transactions on Magnetics, Vol. 56, No. 3, 5, 2020.
doi:10.1109/TMAG.2019.2962030

5. Yadav, Ravi and Ravi Panwar, "Structure for stealth applications," IEEE Transactions on Magnetics, Vol. 58, No. 1, 1-5, 2022.
doi:10.1109/TMAG.2021.3103133

6. Panwar, Ravi and Jung Ryul Lee, "Performance and non-destructive evaluation methods of airborne radome and stealth structures," Measurement Science and Technology, Vol. 29, No. 6, Jun. 2018.
doi:10.1088/1361-6501/aaa8aa

7. Qian, Kun, Qifan Li, Alexander Sokolov, Chengju Yu, Piotr Kulik, Ogheneyunume Fitchorova, Yajie Chen, Chins Chinnasamy, and Vincent G. Harris, "Electromagnetic shielding effectiveness of amorphous metallic spheroidal- and flake-based magnetodielectric composites," Journal of Materials Science & Technology, Vol. 83, 256-263, 2021.

8. Zheng, Zongliang, Quanyuan Feng, and Qianyin Xiang, "Low-loss NiZnCo ferrite processed at low sintering temperature with matching permeability and permittivity for miniaturization of VHF-UHF antennas," Journal of Applied Physics, Vol. 121, 063901(1-7), 2017.
doi:10.1063/1.4975371

9. Yao, Xi, Jian-Ping Zhou, Xiao-Li Zhang, and Xiao-Ming Chen, "Magnetodielectric mechanism and application of magnetoelectric composites," Journal of Magnetism and Magnetic Materials, Vol. 550, 169099, Jan. 2022.

10. Schaubert, Daniel H., David M. Pozar, and Andrew Adrian, "Effect of microstrip antenna substrate thickness and permittivity: Comparison of theories with experiment," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 6, 677-682, 1989.

11. Pozar, David M., Microwave Engineering, John Wiley & Sons, 2011.

12. Kim, Jae Hee and Jinkyu Bang, "Antenna impedance matching using deep learning," Sensors, Vol. 21, No. 20, 1-10, Oct. 2021.
doi:10.3390/s21206766

13. Li, Wen, Jian Ren, Bing Zhang, Yan-Ting Liu, Honghao Zhang, Yingzeng Yin, and Ming Shen, "Wideband dielectric patch antenna with stable radiation pattern," IEEE Antennas and Wireless Propagation Letters, Vol. 22, No. 7, 1716-1720, Jul. 2023.
doi:10.1109/LAWP.2023.3261506

14. Calisir, Ilkan, Xiantao Yang, Elliot L. Bennett, Jianliang Xiao, and Yi Huang, "Enhancing the bandwidth of antennas using polymer composites with high dielectric relaxation," Materials Today Electronics, Vol. 3, 100026, Feb. 2023.

15. Mosallaei, H. and K. Sarabandi, "Magneto-dielectrics in electromagnetics: Concept and applications," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1558-1567, Jun. 2004.
doi:10.1109/TAP.2004.829413

16. Costa, Filippo, Michele Borgese, Marco Degiorgi, and Agostino Monorchio, "Electromagnetic characterisation of materials by using transmission/reflection (T/R) devices," Electronics, Vol. 6, No. 4, Dec. 2017.
doi:10.3390/electronics6040095

17. Hakansson, Eva, Andrew Amiet, and Akif Kaynak, "Dielectric characterization of conducting textiles using free space transmission measurements: Accuracy and methods for improvement," Synthetic Metals, Vol. 157, No. 24, 1054-1063, Dec. 2007.
doi:10.1016/j.synthmet.2007.11.001

18. Maenhout, Gertjan, Tomislav Markovic, Ilja Ocket, and Bart Nauwelaers, "Effect of open-ended coaxial probe-to-tissue contact pressure on dielectric measurements," Sensors, Vol. 20, No. 7, 1-13, Apr. 2020.
doi:10.3390/s20072060

19. Khan, Muhammad Talha and Syed Muzamil Ali, "A brief review of measuring techniques for characterization of dielectric materials," International Journal of Information Technology and Electrical Engineering, Vol. 1, No. 1, 1-5, 2012.

20. Dubrovskiy, Sergey and Kamil Gareev, "Measurement method for detecting magnetic and dielectric properties of composite materials at microwave frequencies," Proceedings of the 2015 IEEE North West Russia Section Young Researchers in Electrical and Electronic Engineering Conference (2015 ElConRusNW), 24-26, St. Petersburg, Russia, Feb. 2015.

21. Venkatesh, M. S. and G. S. V. Raghavan, "An overview of dielectric properties measuring techniques," Canadian Biosystems Engineering, Vol. 47, No. 7, 15-30, 2005.

22. Javed, Ahmed, Ali Arif, Muhammad Zubair, Muhammad Qasim Mehmood, and Kashif Riaz, "A low-cost multiple complementary split-ring resonator-based microwave sensor for contactless dielectric characterization of liquids," IEEE Sensors Journal, Vol. 20, No. 19, 11326-11334, 2020.

23. Shafi, K. T. Muhammed, Abhishek Kumar Jha, and Mohammad Jaleel Akhtar, "Improved planar resonant RF sensor for retrieval of permittivity and permeability of materials," IEEE Sensors Journal, Vol. 17, No. 17, 5479-5486, Sep. 2017.
doi:10.1109/JSEN.2017.2724942

24. Zhao, Wen-Sheng, Hong-Yi Gan, Li He, Qi Liu, Wei Wang, Kuiwen Xu, Shichang Chen, Linxi Dong, and Gaofeng Wang, "Microwave planar sensors for fully characterizing magneto-dielectric materials," IEEE Access, Vol. 8, 41985-41999, 2020.
doi:10.1109/ACCESS.2020.2977327

25. Saadat-Safa, Maryam, Vahid Nayyeri, Mostafa Khanjarian, Mohammad Soleimani, and Omar M. Ramahi, "A CSRR-based sensor for full characterization of magneto-dielectric materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 2, 806-814, Feb. 2019.
doi:10.1109/TMTT.2018.2882826

26. Alqadami, Abdulrahman S. M., Mohd Faizal Jamlos, and Mohd Aminudin Jamlos, "Efficacy of a wideband flexible antenna on a multilayer polymeric nanocomposites FeO-PDMS substrate for wearable applications," Current Applied Physics, Vol. 19, No. 11, 1259-1265, 2019.

27. Hamouda, Z., Jean-Luc Wojkiewicz, Alexander A. Pud, L. Kone, S. Bergheul, and T. Lasri, "Magnetodielectric nanocomposite polymer-based dual-band flexible antenna for wearable applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 7, 3271-3277, 2018.
doi:10.1109/TAP.2018.2826573

28. Shueai, A., M. Alqadami, and M. Faizal, "Assessment of PDMS technology in a MIMO antenna array," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1939-1942, 2015.

29. Maleki, Mostafa, Seyyed Hossein Mohseni Armaki, and Emad Hamidi, "Study of ferrite material characterization using transmission line model," Microwave and Optical Technology Letters, Vol. 60, No. 12, 2876-2880, Dec. 2018.
doi:10.1002/mop.31428

30. Shafi, Muhammed K. T., Abhishek Kumar Jha, and M. Jaleel Akhtar, "Dual band RF sensor for testing of magnetic properties of materials using meandered line SRR," Sensors and Actuators A-Physical, Vol. 272, 170-177, Apr. 2018.
doi:10.1016/j.sna.2018.01.011

31. Sahin, Seckin, Niru K. Nahar, and Kubilay Sertel, "A simplified Nicolson-Ross-Weir method for material characterization using single-port measurements," IEEE Transactions on Terahertz Science and Technology, Vol. 10, No. 4, 404-410, Jul. 2020.
doi:10.1109/TTHZ.2020.2980442