Vol. 135
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2023-08-11
Optimization of Flux-Concentrating Consequent-Pole Permanent Magnet Fault Tolerant Vernier Rim-Driven Motor
By
Progress In Electromagnetics Research C, Vol. 135, 241-253, 2023
Abstract
In view of the problems of excessive magnetic flux leakage of the traditional permanent magnet fault-tolerant vernier rim-driven motor, low utilization rate of permanent magnets and high price of permanent magnet materials, this paper proposes a flux-concentrating consequent-pole permanent magnet fault-tolerant vernier rim-driven motor structure. Firstly, combined with the magnetic field modulation theory, the no-load air gap magnetic density of the motor is analyzed, and the working principle of the multi-harmonic operation of the motor is explained according to the harmonic analysis. Secondly, parametric modeling is used to screen the critical structural parameters that can significantly affect electromagnetic performance of the motor, and the response surface method and sensitivity analysis are used to rank the sensitivity of the critical parameters. Then, the high-sensitivity parameters are first subjected to multi-objective optimization, and then adjusted according to the low-sensitivity parameters. Finally, the air gap magnetic density, back- EMF, cogging torque and permanent magnet numbers of the motor before and after optimization are compared and analyzed by finite element analysis. The results show that the flux-concentrating consequent-pole permanent magnet vernier rim-driven motor has higher torque density, less torque ripple and higher utilization of permanent magnets.
Citation
Wangsong He, Jingwei Zhu, Zhe Wang, Jiubo Yue, and Tianrui Zhao, "Optimization of Flux-Concentrating Consequent-Pole Permanent Magnet Fault Tolerant Vernier Rim-Driven Motor," Progress In Electromagnetics Research C, Vol. 135, 241-253, 2023.
doi:10.2528/PIERC23052801
References

1. Zhi, Y., Y. Ping, O. Wu, B. Fen, et al. "A review of electric motor and control technology for rim-driven thruste," Transactions of China Electrotechnical Society, Vol. 37, No. 12, 2949-2960, 2022.

2. Tan, W. Z., X. P. Yan, Z. L. Liu, et al. "Technology development and prospect of shaftless rim-driven propulsion system," Journal of Wuhan University of Technology (Transportation Science & Engineering), Vol. 39, No. 3, 601-605, 2015.

3. Du, D. and K. Yang, "Research on propeller technology development of Russian nuclear submarine," Ship Science and Technology, Vol. 39, No. 23, 184-187, 2017.

4. Lea, M., D. Thompson, B. V. Blarcom, et al. "Scale model testing of a commercial rim driven propulsor pod," Journal of Ship Production, Vol. 19, No. 2, 121-130, 2002.
doi:10.5957/jsp.2003.19.2.121

5. Dine, P. V., "Manufacture of a prototype advanced permanent magnet motor pod," Journal of Ship Production, Vol. 19, No. 2, 91-97, 2003.
doi:10.5957/jsp.2003.19.2.91

6. Shen, Y., P. Hu, S. Jin, et al. "Design of novel shaftless Pump-Jet propulsor for multi-purpose long- range and high-speed autonomous underwater vehicle," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016.
doi:10.1109/TMAG.2016.2522822

7. Song, Y., "A new concept pod propulsion technology," Ship Electric Technology, Vol. 31, No. 12, 57-59, 2011.

8. Hsieh, M. F., J. H. Chen, Y. H. Yeh, et al. "Integrated design and realization of a hubless rim-driven thruster," 33rd Annual Conference of IEEE Industrial Electronics Society, 3033-3038, 2007.

9. Varaticeanu, B. D., P. Minciunescu, C. Nicolescu, et al. "Design and validation of a 2.5 kW electric naval propulsion system with rim driven propeller," 2017 Electric Vehicles International Conference (EV), 1-5, IEEE, 2017.

10. Kong, B., L.-Z. Xiong, L. Chen, et al. "Research of the model test device design for rim-driven propulsor," Ship Science and Technology, No. 12, 163-166, 2017.

11. Zhang, X., J. Liang, M. Qiao, et al. "Design and analysis of propelling motor used in an integrated motor propulsor," Transactions of China Electrotechnical Society, Vol. 28, No. 11, 170-175, 2013.

12. Yu, P., J. Zhou, and G. Zhang, "Preliminary design of rim-electric driven propeller and effect factor analysis on cogging torque," Chinese Journal of Ship Research, Vol. 13, No. 2, 103-109, 2018.

13. Hu, P., S. Jin, Y. Shen, et al. "Design and multifield coupled analysis of cooling system for PM motor in rim driven propulsor," Ship Electric Technology, Vol. 36, No. 3, 28-31, 2016.

14. Qiao, T., Design and optimization of fault tolerant permanent magnet vernier rim driven machine, Dalian Maritime University, 2022.

15. Cheng, M., H. Wen, P. Han, et al. "Analysis of airgap field modulation principle of simple salient poles," IEEE Transactions on Industrial Electronics, Vol. 66, No. 4, 2628-2638, 2019.
doi:10.1109/TIE.2018.2842741

16. Li, H., Z. Q. Zhu, and Y. Liu, "Optimal number of flux modulation pole in vernier permanent magnet synchronous machines," IEEE Transactions on Industry Applications, Vol. 55, No. 6, 5747-5757, 2019.
doi:10.1109/TIA.2019.2930026

17. Liang, Z., Y. Gao, D. Li, et al. "Design of a novel dual flux modulation machine with consequent- pole spoke-array permanent magnets in both stator and rotor," CES Transactions on Electrical Machines and Systems, Vol. 2, No. 1, 73-81, 2018.
doi:10.23919/TEMS.2018.8326453

18. Liu, G., J. Yang, W. Zhao, et al. "Design and analysis of a new fault-tolerant permanent-magnet vernier machine for electric vehicles," IEEE Transactions on Magnetics, Vol. 48, No. 11, 4176-4179, 2012.
doi:10.1109/TMAG.2012.2204042

19. Zhao, W., K. Du, and L. Xu, "Design considerations of fault-tolerant permanent magnet vernier machine," IEEE Transactions on Industrial Electronics, Vol. 67, No. 9, 7290-7300, 2020.
doi:10.1109/TIE.2019.2942571

20. Chung, S.-U., J.-W. Kim, Y.-D. Chun, et al. "Fractional slot concentrated winding PMSM with consequent pole rotor for a low-speed direct drive: Reduction of rare earth permanent magnet," IEEE Transactions on Energy Conversion, Vol. 30, No. 1, 103-109, 2015.
doi:10.1109/TEC.2014.2352365

21. Baloch, N., B. Kwon, and Y. Gao, "Low-cost high-torque-density dual-stator consequent-pole permanent magnet vernier machine," IEEE Transactions on Magnetics, Vol. 54, No. 11, 8206105, 2018.
doi:10.1109/TMAG.2018.2849082

22. Li, J. and K. Wang, "Analytical determination of optimal PM-arc ratio of consequent-pole permanent magnet machines," IEEE/ASME Transactions on Mechatronics, Vol. 23, No. 5, 2168-2177, 2018.
doi:10.1109/TMECH.2018.2865517

23. Shi, Y. and L. Jian, "A novel dual-permanent-magnet-excited machine with flux strengthening effect for low-speed large-torque applications," Energies, Vol. 11, No. 1, 153, 2018.
doi:10.3390/en11010153

24. Li, D., R. Qu, J. Li, et al. "Consequent-pole toroidal-winding outer-rotor vernier permanent-magnet machines," IEEE Transactions on Industry Applications, Vol. 51, No. 6, 4470-4481, 2015.
doi:10.1109/TIA.2015.2458953